CS 3853 Midterm Exam 1 Solutions — Fall 2013

- 1) (4 points) $\frac{E_B}{E_A} = 1.4$ and $E_B = 8$ so $E_A = 8/1.4 = 5.7143$ seconds.
- 2) (4 points) $\frac{E_B}{E_A} = 1.4$ and $E_A = 8$ so $E_B = 1.4 \times 8 = 11.2$ seconds.
- 3) (4 points) $\frac{E_B}{E_A}=1.4$ and $\frac{E_C}{E_B}=1.7$ so $\frac{E_C}{E_A}=1.4\times 1.7=2.55$
- 4) (4 points) $\frac{E_B}{E_A} = 1.5$ and $\frac{E_C}{E_A} = 1.7$ so $\frac{E_C}{E_B} = 1.7/1.5 = 1.1333$, so B is 13.33% faster than C.
- 5) (4 points) $\frac{5,000,000,000}{700,000,000} = x^5$, so $x^5 = 50/7$, so x = 1.48175. $x^{12} = 112.019$, so $112.019 \times 5 \times 10^9 = 5.601 \times 10^{11}$.
- 6) (4 points) If the power supply MTTF is x hours, failure rate $=\frac{7}{1.200.000} + \frac{2}{x} = \frac{1}{100.000}$ so x = 480,000, and the answer is 480,000 hours.
- 7) (8 points, 4 points each)

 - a) $E_B = .8E_B + .2E_B$ and $E_A = .8E_B + .2 \times 1.65E_B = 1.13E_B$ so $\frac{E_A}{E_B} = 1.13$. b) $E_A = .8E_A + .2E_A$ and $E_B = .8E_A + .2/1.65E_A = .9212E_A$, so $\frac{E_A}{E_B} = 1/.9212 = 1.0855$
- 8) (4 points) $E_A = .8E_A + .2E_A$ and $E_B = .8/1.4E_A + .2/1.9E_A = .6767E_A$, so $\frac{E_A}{E_B} = 1/.6767 = 1.4778$
- 9) (9 points)
 - a) The value of R2 and 3 are added and the result is stored in the EX/MEM pipeline register. Also, at least part of the instruction (the destination register address) is copied from ID/EX to EX/MEM. At least 2 control bits are also copied (branch taken and WB?) from ID/EX to EX/MEM.
 - b) The value of R2 and 8 are added and the result is stored in the EX/MEM pipeline register. Also, part of the instruction (the destination register address) is copied from ID/EX to EX/MEM. At least 2 control bits are also copied (branch taken and WB?) from ID/EX to EX/MEM.
- 10) (10 points, 2 point for each part)

			select	input	
	Instruction	Mux A	Mux B	Mux C	Mux D
a)	DADD R1, R2, R3	1	0	1	1
b)	DSUB R1, R2, #7	1	1	1	1
c)	LD R1, 8(R2)	1	1	1	0
d)	SD R1, 8(R2)	1	1	1	X
e)	BEQZ R1, loop	0	1	0	X

11) (10 points, 1 point each)

Description	Value	Description	Value
IR ₆₁₀	2	IR ₁₁₁₅	1
top Registers output	13	bottom Registers output	9
Mux A output	13	Mux B output	3
ALU output	16	Mux D output	16
MEM/WB.IR Register input	1	bottom Registers input	16

- 13) (3 points)
 - a) old = .8 + .2, new = .8/1.4 + .2/s = .57143 + .2/s, where s is the speedup of the floating point processor. Setting 1/(.57143 + .2/s) to 1.5 and solving for s gives 2.1. So we must make the floating point processor 110% faster.
 - b) Cannot be done. The maximum speedup is 1.4/.95 = 1.47368.
- 14) (9 points, 1 point each)

instructi	on	cycle 30	cycle 31	cycle 32	cycle 33	cycle 34	cycle 35	cycle 36	cycle 37
DADD	R1, R2, R3	IF	ID	EX	MEM	WB			
OR	R4, R5, R6		IF	ID	EX	MEM	WB		
AND	R7, R8, #14			IF	ID	EX	MEM	WB	
DADD	R9, R1, #12				IF	ID	EX	MEM	WB

Description	cycle	value	Description	cycle	value	Description	cycle	value
IR ₆₁₀	33	8	IR ₆₁₀	34	1	IR ₆₁₀	34	9
Mux B output	33	25	Mux D output	34	36	MEM/WB.IR Registers input	34	1
Mux B output	34	14	Mux D output	37	48	MEM/WB.IR Registers input	35	4

15) (8 points, 1 point each)

- a) The first instruction sets R1 in cycle 5 (WB), but the second one needs it in cycle 3 (ID).
- b) 2 and 1
- c) ID of the second instruction, which is cycle 3
- d) ID/EX
- e) IF/ID
- f) ID of the third instruction, which is cycle 4.
- g) EX/MEM
- h) IF/ID

12) (15 points, 3 points each)

a) Assume that there is no forwarding.

instruction		cycle 1	cycle 2	cycle 3	cycle 4	cycle 5	cycle 6	cycle 7	cycle 8	cycle9	cycle 10
DADD	R1, R2, R3	IF	ID	EX	MEM	WB					
DSUB	R4, R5, R6		IF	ID	EX	MEM	WB				
AND	R7, R8, R9			IF	ID	EX	MEM	WB			

b) Assume that there is no forwarding.

instructi	ion	cycle 1	cycle 2	cycle 3	cycle 4	cycle 5	cycle 6	cycle 7	cycle 8	cycle9	cycle 10
DADD	R1, R2, R3	IF	ID	EX	MEM	WB					
DSUB	R4, R5, R1		IF	stall	stall	ID	EX	MEM	WB		
AND	R7, R8, R9			stall	stall	IF	ID	EX	MEM	WB	

c) Assume that forwarding is used.

instruction		cycle 1	cycle 2	cycle 3	cycle 4	cycle 5	cycle 6	cycle 7	cycle 8	cycle9	cycle 10
DADD	R1, R2, R3	IF	ID	EX	MEM	WB					
DSUB	R4, R5, R1		IF	ID	EX	MEM	WB				
AND	R7, R8, R9			IF	ID	EX	MEM	WB			

d) Assume that there is no forwarding.

instructi	ion	cycle 1	cycle 2	cycle 3	cycle 4	cycle 5	cycle 6	cycle 7	cycle 8	cycle9	cycle 10
LD	R1, 8(R2)	IF	ID	EX	MEM	WB					
DSUB	R4, R5, R1		IF	stall	stall	ID	EX	MEM	WB		
AND	R7, R8, R9			stall	stall	IF	ID	EX	MEM	WB	

e) Assume that forwarding is used.

instructi	ion	cycle 1	cycle 2	cycle 3	cycle 4	cycle 5	cycle 6	cycle 7	cycle 8	cycle9	cycle 10
LD	R1, 8(R2)	IF	ID	EX	MEM	WB					
DSUB	R4, R5, R1		IF	stall	ID	EX	MEM	WB			
AND	R7, R8, R9			stall	IF	ID	EX	MEM	WB		