The JOTSA Animation Environment

Steven Robbins
Division of Computer Science
University of Texas at San Antonio
srobbins@cs.utsa.edu

Abstract. JOTSA (Java On Time Synchronous Animation)
is an environment for web-based animation of agorithms
and data. Ontimereferstothemoving of objects sothat they
complete their movement at a known time, independent of
the hardware or operating system of thetarget machine. Syn-
chronousrefers to the coordination of the movement of sev-
eral objects. JOTSA was motivated by the need to represent
exact timing relationships in network protocols and other
time-critical applicationsin a platform-independent manner.
JOTSA provides aweb-based user interface which is a nat-
ural vehicle for remote execution and wide dissemination.
In addition to exact time animation, JOTSA supports multi-
ple dependent or independent views, panning and zooming,
linking of collections of objects, event-driven simulation,
and synchronization. Applications have the full resources
of the Javavirtual machine and can bewritten to support in-
teraction in away that isfamiliar to the user.

1 Introduction

JOTSA (Java On Time Synchronous Animation) is a Java
animation package for performing interactive animations.
JOTSA's representation of movement is based on the path-
transition paradigm[25]. Ontimereferstothemoving of ob-
jects so that they complete their movement at aknown time,
independent of the hardware or operating system of the tar-
get machine. Synchronous refers to the coordination of the
movement of several objects. If two objects are supposed to
maintain a certain rel ationship asthey move, that relationis
exactly maintained on the display. JOTSA iswrittenin the
Java language [2], so it can be used on most modern plat-
forms. JOTSA animationscan berun over anetwork through
astandard browser, and JOTSA has facilities which make it
suitable for animation of user-written event-driven or time-
driven simulations.

JOTSA was motivated by the need to develop interac-
tive animated simulations of network protocols. In atypi-
ca network protocol, two or more processes communicate
using handshaking. In the simplest case, one process sends
apacket and waits for an acknowledgment. The next action

depends on thetiming of eventsthat are not under the control
of the sender, e.g. whether an acknowledgment arrives be-
forethetimeout. In aninteractivesimulation, theuser should
be able to affect the behavior of the simulation, say by de-
stroying an acknowledgment before it reaches the sender.
The user interaction makes interactive simul ation nondeter-
ministicin contrast to non-interactivesimulationswhere the
result of agiven transmission is predetermined by the input
to the simulator.

The design goals of non-interactive and interactive sim-
ulations are very different. A typical design goa for non-
interactive simulation is to produce the results as soon as
possible. The completion time depends either on the size of
the time step (time-driven simulation) or the granularity of
the events (event-driven simulation). In either case the ex-
ecution time depends on the speed of the underlying hard-
ware and software of the simulator. A design goal of in-
teractive simulation isto have the simulated time appear to
flow a a smooth, predictable rate. Idedly, this rate should
be independent of the platform and the amount of compu-
tation required. Network protocolsand many other smula-
tionstypically have atime scale on the order of milliseconds
or microseconds. Rather than having these simulations run
as quickly as possible, animation of such protocolsmust be
scaled down to a human time scale of seconds.

The combination of an interactive simulation with ani-
mation for display poses certain difficulties. The animation
must accurately reflect the movement of time. There aretwo
aspects of this, the coordination of the animation with the
simulation and the coordination of simulation time with real
time. In many cases the time scale of the underlying system
isso fast compared to the human time scale, that the simula
tion needs to be dlowed down by afactor of 1000 or more to
allow for human interaction. Performing the computations
for the simulation fast enough is not aproblem. The anima-
tion, on the other hand, poses severe restrictionson what can
be shown. A smooth animation might require 30 frames per
second, and such adisplay rate will tax even thefastest plat-
formif the animation is complicated.

With hardware speed increasing exponentially and effi-

cient Javaimplementations becoming available, animations
may become unusable when moved to faster platforms. The
author had just such a problem with an XTANGO applica-
tion [17] which ran at about the right speed on the SPARC
LX on which it was designed, but was much too fast when
the lab upgraded to SPARC 5’'s and was lightning fast when
run on a 200 Mhz Pentium Pro. Whileit was possibleto ad-
just the speed whilethe animation was running, the user had
to guess at the right setting for the particular hardware, and
the rate at which the animation ran also depended on what
other processing was occurring on the machine. JOTSA di-
rectly addresses these problems. A JOTSA animation runs
at the same rate on both fast and very fast hardware. This
exact time execution is particularly difficult in Java because
the user does not have direct control of the screen.

Section 2 discusses the related work, and Section 3 gives
an overview of JOTSA. Timing issues are discussed in Sec-
tion 4. Some simple examples are given in Section 5, and
the motivating network example is described in Section 6.
Section 7 addresses some performance issues and Section 8
presents a discussion of open issues in Java animation.

2 Related Work

The extensive work on algorithm animation is described
in the survey by Myers [13] and the definitive work of
Brown[5]. XTANGO[26] and POLKA [27] are X-based an-
imation librariesfor C and C++ programs which motivated
the creation of JOTSA. XTANGO’s companion Animator
is a standalone program that does animation controlled by
ASCII strings sent to standard input. The Animator can be
used with any program by having that program generate ani-
mation commands that are piped into the Animator. POLKA
isa parale animation library for animating the execution
of paradlel programs. POLKA animations must be written
in C++ and the display is based on X. The Polkamodel has
been extended to include rea-time animations with Polka-
RC [28]. In Polka-RC the program being animated and the
animation routines run as separate processes and communi-
cate using sockets.

A large number of simulation tools and languages with
built-in animation tools are available. Most of these must
be compiled for a particular system but are available on
severa platforms. GPSS [24] is a specia -purpose smula-
tion language oriented toward queuing systems which has
had many reincarnations [4, 8]. SIMSCRIPT 11 [23] isa
genera programming language with features for building
simulation models. SIMGRAPHICS does back-end anima-
tion and front-end graphica input for SIMSCRIPT I1. SIM-
MAN/Cinema[15] isagenera purpose simulation and an-
imation language which has been used mainly in the manu-
facturing area. AweSim [14] isageneral purposesimulation

system for MS Windows systems which represents smula-
tion objects by Windows bitmapsthat can be moved around.
Simulators without direct support of animation can use an
add-ontool such as Proof Animation [10] to perform anima
tionsfromtrace data. Proof Animationworksinaway simi-
lar tothe XTANGO Animator, but theanimationisdoneafter
the simulation has completed, and it is designed specifically
for use with simul ation languages.

Several Java-based simulation tools have recently been
announced. JSIM [1] isa simulation library which is inte-
grated with a database management system and is based on
Query Driven Simulation. Simkit [7] is a class library for
discrete simulation written in Java. Neither of these pack-
ages addresses the issue of exact time animation.

Project Horizon [11] is a cooperative agreement between
NASA and the University of Illinoisto enhance web tech-
nology to better support public access to earth and space sci-
ence data The Horizon Data Browser is a Javarbased tool
for browsing and visualizing scientific data. Itisstill inthe
alpha stage [30] of development but promises to provide a
number of useful toolsfor animating data over the web.

Mocha[3] usesacompletely different model for algorithm
animation over the web that is not based on Java. The goal
of the systemisto provideahigh level of security to protect
algorithmcode. AsintheX Windows System model, Mocha
programs run on the remote machine and the user interface
runslocaly. Mochaisstill in the prototype stage.

The need to modify the display methodol ogy when deal -
ing with time-critical visuaizations in the context of 3D
modeling on high performance machines has drawn somere-
cent attention [6, 12]. Herewe areinterested in more modest
displays, but on commodity computers.

3 JOTSA Overview

JOTSA follows the object-oriented design paradigm of the
Java language. The JOTSA class JotsaAnimationObject
encapsulates al of thestructuresand methods needed to con-
trol a moving object. In the path-transition approach asim-
plemented here, a path is a mapping from virtual time into
amultidimensional space. At each point of time the object
has a position (x-y coordinates), a shape (e.g. rectangle or
oval), asize, an orientation, a color and other properties. By
default, all of these attributesare constant. |n most cases, the
user will just specify how the position changes with time.

3.1 Shapes

JOTSA supportsall of thegeometric shapes supported by the
underlying Java language including rectangles, ovals, char-
acter strings, arcs, lines and polygona paths. In addition,
regular polygons can be specified by the number of sides

and aradius. Multi-line strings can be specified by single
string contai ning newlinesymbols. JOTSA also supportsex-
ternally created images and movies consisting of sequences
of images. These movies can be displayedin real timein a
frame-accurate way.

3.2 Position

The natura representation of an object may depend on the
intended use. A standard way of specifying the position of
acharacter string is by the coordinates of itslower |€eft cor-
ner. This coordinate system is appropriateif the stringisto
be l€eft justified. However, if the string isto be put inacir-
cle, it ismore convenient to specify the center of the string.
The standard Java coordinate system defines (0,0) at the up-
per |eft corner of the applet window. Java supports specify-
ing the position of a rectangle by its upper Ieft corner, the
position of an ova by the upper left corner of its bounding
rectangle, the position of astring by itslower |eft corner and
the position of a polygon by the coordinates of the vertices.

Whilethe Java coordinate representations are appropriate
for some applications, the selection of aparticular vertex of
arectangle asitsoriginis somewhat arbitrary. JOTSA sup-
ports a centered object coordinate system in addition to the
standard Java coordinate system. Specifying objectsby their
centers leads to a natural way of grouping objects together
and mani pul ating them as a group. For example, a polygon
can be represented by the coordinates of its center and the
rel ative positionsof the verticesfrom the center. Moving the
polygon just requires changing the coordinates of the center
position. JOTSA also alowsthe position of one object to be
specified relativeto that of another object so that objectscan
be moved as a group.

3.3 Size

Another attribute that can change along a path is the size of
an object. Rectangles and ovals have a size parameter for
each dimension, while character strings and regular poly-
gonshaveonesuchvaue. Thesizeof astringisthepointsize
of itsfont, and the size of aregular polygonisitsradius.

In JOTSA, the size of an object on the screen is deter-
mined by itssize parameters and several scalingfactors. The
Size parameters areintegers representing anumber of pixels.
The scaling factors are doublesto allow for smoothly chang-
ing the size of an object along its path without accumul ating
roundoff error. A singlescaling factor can be used to change
the size of several objectsin acoordinated way.

3.4 Collections

A JOTSA caollection consists of a controlling object called
the master and one or more additional objects called daves.

The relationship between a master and adave in JOTSA is
set up sothat amaster and al of itsslavesact asaunit. Com-
plex objects can be generated from simpler ones. When the
master moves, the entire collection movesin a coordinated
way. When the master is scaled in a given dimension, the
daves are similarly scaled and their positions are adjusted
so that the unit is scaled.

Figure 1a) showsacircular master object and a number of
daverectangles. All scaling factorsare one. Thepositionsof
the rectangles are specified by the positions of their centers
relativeto the center of the master. The center of each object
ismarked with asmall dot, althoughin JOTSA it would not
normally be shown. Figure 1b) shows the same collection
when the scaling factors of the circle master object have be
changed to 2.0 in the x-direction and 0.5 in the y-direction.

a) b)

Figure 1: A collection of rectangles with a master circle.

In order to preserve a collection under scaling, JOTSA
defines two positionsfor each object. The position that an
object appears on the screen is called its absolute position.
Each object also has a pair of (z,y) coordinates called its
natural position which by default is the same as the abso-
lute position. When an object is adave within a collection,
its natural position represents the position of the object rela-
tiveto the master. Inthe same way, each object has absolute
and natura size parameters and other scal able attributes.

Supposethat the master has absol ute x-coordinate X ,,, and
scaling factor inthe x-direction, s,,,. If asdlave has natural x-
coordinate x ;, scaling factor in the x-direction, s, and nat-
ural size (width) in the x-direction, w;, then the absolute x-
coordinate of the dave, X,, and the absolute width of the
dave, W, are:

Xy =X + s

W, = 8,85 Ws

Notice that the scaling factor of the master affects both the
position and size of the dave, whilethe scaling factor of the
dave affects only its size. Figure 1 shows why this scal-
ing method produces the desired result. When the master is
scaled by afactor of 2.0 in thex-direction, the differencein
the x-coordinates of the master and each of its slaves must

be doubled. Similarly, when the master is scaled by afactor
of 0.5in the y-direction, the difference in the y-coordinates
of the master and each of itsslaves must be halved. Usually
the master object isjust used to control the dlaves and is not
displayed.

When two collectionsare merged into one, al of thedave
objectsin one collection are linked to the master of the other
collection and have their natural position and size modified
so that after the relinking, their absolute position and size
remain the same. The other master isthen deleted.

When a master object isrotated, the position of itsslaves
aresimilarly rotated. If theslave object isrotatable, thedave
isalso rotated about its center so that therotation of the mas-
ter and dave behave as a rigid rotation of the two objects.
Certain JOTSA objects (such as ova s) cannot be rotated. In
thiscase theposition of theslaveisrotated, but itsorientation
stays fixed rel ative to the screen when the master isrotated.

A more detail ed description of JOTSA collectionscan be
foundin[19].

3.5 Multiple Independent Synchronized Views

JOTSA animation is done in one or more rectangular por-
tions of the screen called canvases. Each canvas is associ-
ated with a set of objects which are to be displayed in that
canvas. JOTSA synchronizes the canvases so that all can-
vas displays correspond to the same virtual time. Because
of this synchronization, different canvases can show differ-
ent views of the same scene.

3.6 Multiple Dependent Views

JOTSA supportspanning and zooming. In fact, each canvas
can have any number of scalable windows associated with
it. Each such window shows the same objects as the parent
canvas, but the view can be scaled (zoomed in or out) and
trand ated (panned). While Java supportsscaling of any im-
age on thefly, rescaling an image of amoderate sizetakes on
the order of a second on amoderately fast machine. Thisis
at least an order of magnitudetoo slow for animationin real
time. JOTSA redrawstheobjectswiththeappropriatesizein
the scaled window instead of using theintrinsic Java scaling.
Aslong as the number of objectsis not too large (say, less
than 100), this approach is considerably faster than scaling
the image produced by drawing the objects.

3.7 DataAnimation

In addition to supporting simul ation and animation of algo-
rithms, JOTSA supportsanimation and visualization of data
with time critical features that must be preserved indepen-
dent of the platform. The animation in [16] describes an ex-
periment in which physicists made a videotape of an exper-
iment. The videotape was digitized and the critical features

were animated. The animationincorporatesfading, overlaid
cues and linking of objects across views to improve visual
persistence. JOTSA allowed the animation to be adjacent to
or to be superimposed upon the origina movie.

4 Timinglssues

In traditional animation paradigms, virtua timeismonoton-
ically increasing and changes at a rate determined by the
amount of processing required at each time step or event and
by the speed of the hardware that is running the program.
Unlike other virtual-time systems, JOTSA's virtud timeis
directly linked to real time. The user specifies the speed of
virtual time by arate that connects virtua timeto real time.
When the rate is 1.0, virtual time and real time run at the
same rate. When therate isless than one, virtual time runs
more slowly. For example, arate of 0.5 indicatesthat virtua
timeruns at haf the speed of real time.

A JOTSA animation specifies how an object moves in
terms of virtua time. In the simplest case, an object moves
along a straight line at a constant rate. The movement is
specified by the endpoints of the path and the length of time
(in virtual time) it takes to traverse the path. The user is
then guaranteed that the object will be done moving after the
given amount of virtual time. If the virtual timerateis 1.0,
the user knowsthe real time at which the movement will be
complete. The rate at which the object moves on the screen
is independent of both the speed of the hardware and how
much other processing (other objects moving or other pro-
cess activity) istaking place.

Exact time execution comeswith aprice. If the hardware
istoo slow to handlethe processing that needsto bedone, the
motion may look jumpy. If thisis unacceptable to the user,
virtual time can be slowed down. From the point-of-view of
the developer of the animation, the animation is written in
terms of motionin rea time, and the a gorithms are written
interm of real time,

Thebasic assumptionin JOTSA animationsisthat thedis-
play takes up most of the processing time and that the CPU
can easily keep up with the processing necessary to do ev-
erything other than the display. Under these circumstances,
JOTSA ensuresthat the non-display processing can be done
fast enough to keep up with the flow of virtual time by lim-
iting the display updates.

4.1 When to Repaint

One difficulty with implementing time-appropriate anima
tionsin Javaisthe lack of user control of when the screenis
painted. Each Java canvas has its own paint method which
cannot be called directly by the user. The user must request
that therun-timesystem call paint by executing thecanvas's

repaint method. By giving repaint an optional parameter,
the application can suggest the number of milliseconds be-
forethe paint occurs. Unfortunately thisvalueisjust asug-
gestion.

A possiblerepaint strategy isto try to maintain a reason-
ableframerate of about 30 frames a second. Thisisenough
the ensure that the animation will ook fairly smooth. How-
ever, this strategy would probably use up most of the CPU
capacity of a moderately fast machine. One of the design
goas of JOTSA isto be CPU-friendly: unlessit is needed,
the CPU should be availableto other processes. Thisgod is
not completely altruistic. Javaisnaturally threaded, and a 30
frames per second display rate would leave little processing
power for the non-display threads of the simulation.

CPU friendliness implies that the display should not re-
quire much processing power when nothing is changing on
the display. However, when objects are moving rapidly, it
is acceptable to use the full power of the CPU, especidly if
this rapid movement is short-lived. Aslong as an object is
already being displayed at each pixel positionaongitspath,
redi splaying more often would not improvethe quality of the
display of thisobject. In atypica animation there will be
times when objects are moving and times when they are sta-
tionary. The optimal display rate istherefore dynamic.

Information about the path is part of the object’s class, so
each object should determine its own redisplay rate. Hav-
ing each object cause a redisplay would betoo inefficient so
thisis done by a master thread. The master thread gets the
recommended redisplay rate from each object and takes the
maximum rate withinacertain predetermined interval. Each
time an object is drawn to the screen, the optimal redisplay
rate for that object is calculated and delivered to the applet.

4.2 How to Paint

Since JOTSA supports multiple canvases, the issue of how
to coordinate the paint methods of each canvas must be ad-
dressed. Here are five approaches for coordinating paint
methods:

Method 1: The paint methods are completely indepen-
dent. Each canvas has a thread that periodicaly repaints
the screen at a rate determined by the objects displayed in
that canvas. While ssimple to implement, this method does
not provideany guarantees of synchronization between can-
Vases.

Method 2: The paint methods are independent, that is,
each executes asaresult of arepaint request for that canvas,
but al repaints use the same virtua time. A master thread
determines when to repaint based on all objects displayed.
All of the objects calculate their positionsbased on the same
virtual time until the master thread calls the repaints again.

Method 3: The canvas's paint method copies a tempo-
rary imageto the screen. A master thread requests each can-

vasinturntofill thetemporary imagewith objectsbased ona
common virtua time. When theimageiscomplete, the mas-
ter thread callseach canvas' srepaint. Thisapproachisami-
nor modification of Method 2 that requires some additional
synchronization, since paint should not access the tempo-
rary image whileit is being modified.

Method 4: Each canvas steal s the graphics context from
itspaint method allowingit to paint directly without calling
repaint. The master thread has al canvases paint serially in
a predetermined order using the same virtua time.

Method 5: Each canvas draws all objectsto atemporary
image rather than directly to the screen. When all objects
have been drawn to thetemporary images of all canvases, the
canvases draw that image to the screen. This minor modifi-
cation of Method 4 minimizes the delay between the updat-
ing of the screen for the various canvases.

Methods 2, 3, 4 and 5 have been implemented, and a study
isbeing conducted to determine which producesthe best re-
sults.

4.3 TimeDriven Simulation and Movies

In time driven simulation, virtual time isincremented by a
fixed amount at each timestep. Similarly, moviesareusually
shown at afixed frame rate. JOTSA supportsthe ability to
display at a given frame rate. If the animation for a given
movie frame cannot be displayed in time for the next frame,
some frames will be lost. If an animation time step cannot
be displayed fast enough, the display of sometime stepswill
not appear, but the computation for each time stepisdoneso
that the smulationiscorrect. It isassumed that most of the
processing isduetothedisplay rather than thesimulationand
the simul ation processing can be donefast enough to keep up
with the passage of virtual time.

4.4 Synchronization and Events

Java supports synchronization though the use of monitors.
Each aobject is potentially a monitor, and the key word syn-
chronized isused to include methodsin the monitor. Instead
of condition variables, each monitor has its own wait and
notify methods. Notify events are not queued, and a notify
sent while the corresponding thread is not waiting islost.

JOTSA supports synchronization through the display ob-
jects. When an object isdone moving it can notify a thread
that it hasfinished. JOTSA allowsathreadtoatomically start
an object moving and wait for the object to reach itsfina po-
sition. Thiscapability alowsan animation to avoid therace
conditionin which an object finishesits motion and attempts
to notify the thread before the thread has begun waiting.

In addition to thewait-notify mechanism implemented di-
rectly using the corresponding Java methods, JOTSA also
supportssleeping for agiven virtual time and aqueued event

list in which events are put in aqueue and taken out using a
FIFOdiscipline. Thesefeaturesare convenientin morecom-
plicated simulationsin which events can be generated asyn-
chronousdly to the waiting thread while the waiting thread is
doing other work. Events can aso be generated by an arbi-
trary number of JOTSA timers.

4.5 Scheduling

While JOTSA events and synchronization methods are not
difficult for the programmer familiar with thread program-
ming, experience with teaching advanced undergraduate
computer science majors to use Java indicates that pro-
gramming with threads is a difficult and time consuming
process for the inexperienced programmer. Java program-
ming (without threads) is actually quitesimple, and students
who have programmed before pick it up quickly. The Java
environment uses threads to wait for common events such
as keystrokes, mouse clicks or mouse movements, but these
are easy to use as the implementation is transparent to the
user. Such actions generate eventsthat call an event handler
which the user overrides to handle these events. Thus,
although the Java programming environment is naturally
threaded, this aspect of Java is mostly hidden from the
programmer.

JOTSA providesamethod for handling sequences of ob-
ject motions without the need to deal with thread program-
ming. An object can be set to generate an event captured by
the standard Java handleEvent handler. These new events
indicate compl etion of object movement. A second interface
under development is a scheduling class that schedules ob-
ject movements using a procedural interface.

5 A Simple Example

An applet which uses JOTSA is a class that extends Jot-
saAnimationApplet. A minimal JOTSA applet must per-
form the following stepsin itsinit method:
. Cal super.init();
. Set upalayout whichincludesJotsaDefaultCanvas
as one of its components.
. Make sure the components have been laid out by
caling validate();
. Cal Jotsal nitlmages();
In the simplest case, to move an object requires the fol-
lowing steps:
. Create the object using new JotsaAnimationObject;
. Set the type of the object to be displayed.
. Set the path the object isto move along.
. Set thevirtua timeit takes to move the object.
. Insert the object in thelist of displayable objects.

. Activate the object to start it moving.

When aJotsaAnimationObject is created, itsinitial po-
sition, alevel number and akey are given. Thelevel number
determinesthe order in which objects are displayed and thus
which aobjects cover other objects. Thekey can beused a a
later time to destroy the object. The level and key can be
omitted and JOTSA will automatically choose unique ones.
An example of codeto create an red oval that fitsin arectan-
gle 100 pixelswide and 50 pixels highis given below. The
oval ismoved so that its center travels dlong a straight line
fromthe point (150, 200) to (250, 300) in 5000 milliseconds.

JotsaAnimationObject obj;

obj = new JotsaAnimationObject(150, 200, this);

obj.SetFillOval (100, 50, Color.red);

obj.SetPositionCentered();

obj.PathCreateAlongL ine(150, 200, 250, 300);

obj.TimesSet(5000);

Jotsal nsertObject(obj);

obj.Activate();

A complete applet illustrating this action is about a page
in length and can be found on the web [20]. A more com-
plicated example that illustrates most types of JOTSA ob-
jectscan befoundin[21]. Thesetwo examples are described
in[18].

To move an object and wait for it to complete its motion
requires athread, since aJava applet is not allowed to sleep.
JOTSA providesaclasscalled JotsawWaitingThread tosim-
plify this operation. The user creates a thread that extends
this class, creates the object, and instead of activating the
object, executes: JotsaWait(obj). Thisatomically startsthe
object moving and suspends the thread until the object has
completed its motion. It handlesthe synchronization neces-
sary to avoid the race condition in which the object finishes
itsmotion before thethread issuspended. An exampleillus-
trating this can befound in [22].

6 TheMotivating Example

JOTSA was motivated by the need to perform an animated
simul ation of network protocols. The concept was proven by
implementing interactive animated simulations of the data
link layer protocols described in a standard computer net-
workstext [29].

Figure2 showstheinitial display for aunidirectional ver-
sion of protocol 5 of [29], a dliding window protocol. The
windows of the sender and receiver are shown as well as
gtatistics for the sender and receiver. The user can pull up
a control window and adjust the various parameters such as
error rates and timeout values. At any time the simulation
can be paused and parameters can be adjusted. In thissim-
ulation, the sender and receiver are separate, independent
threads. Each thread implementsits part of the protocol, and

the JOTSA environment doesthe event handling and the an-
imation. The code for each thread closely matches the net-
work agorithm. The user controlsthe animation by making
packets available to the sender from the network layer and
by controlling the type of errors that occur.

Figure 3 shows a snapshot of the display after a group of
frames has been sent. Aseach frameissent, aJOTSA timer
is set to generate atimeout event for the sender thread. The
simul ation does not determine at thispoint whether thetrans-
mission will be successful or not. The error mechanism can
beindependent of thetransmission, and aframe or acknowl-
edgment can be destroyed at any time due to a statistically
driven automatic error mechanism or by the user clicking
on a frame to destroy it whilein transit. The transmission
of the frame is represented by a JOTSA object in motion.
When the motion finishes, the object generates an event that
notifies the receiver thread of aframe arrival. The receiver
then generates an acknowledgment frame. If the acknow!-
edgment frame arrives, it generates aframe arrival event for
the sender.

Since event generation can be tied to the motion of a
JOTSA object, the simulation closely paralds the actua
transmission of data.

For each of thesix protocolsthat have been implemented,
anumber of scenarios have been developed illustrating fea-
turesof that protocol. For example, in Protocol 5thereceiver
has awindow of size one. Thismeans that frames cannot be
accepted out of order. If aframeislogt, asisframe number 3
in Figure 3, the receiver must discard all subsequent frames
and all frames after the lost one must be resent. Clicking
on the Commentary button will bring up a running dialog
box containing a commentary which is synchronized with
therunning of the protocol. Optionally, an audio description
isavailable. The audio commentary is particularly effective
because it allows the user’s eyes to focus on the main ani-
meation display.

A drawback of the Java security model isthat it only al-
lows appletsto read files from the server from which the ap-
plet wasobtained. For example, if theapplet residesonama-
chinecalled appl etserver, and auser isrunning abrowser on
amachine called appletclient, then the applet can read files
stored on appletserver, but it cannot read files stored on ap-
pletclient. The scenarios are configured by files which are
read in by the applet. Generaly, the user will not have di-
rect access to the appletserver machine. The Java security
model thus prevents the user from writing his own scenar-
ios. To enablethis, the user would have to have aweb server
and |oad the JOTSA appletsdirectly onthisweb server. This
would defeat some of the main advantages of using theweb.

The entire application and the JOTSA environment must
be loaded onto the client machine before the applet can be
run. While this is automatically done when the web page

is accessed, it can take a while if the network connection
isslow. The JOTSA code is about 150K bytes in size and
S0 is the application in this example. The first time it is
run, 300K bytes must be downloaded. JOTSA need only be
downloaded once, and additional JOTSA applets can berun
without the JOTSA part being downloaded again. This ex-
ampleapplicationisquitelarge, and atypical JOTSA applet
might only be about 10-20K bytesin size.

While the audio description of the scenarios can greatly
add to their usefulness, the sound files must be downloaded
over the network. A typical scenario might require 10to 20
sound files of about 20K bytes each. Thus the sound data
may far exceed al of therest of the network traffic of a par-
ticular application.

7 Performancelssues

Java performance varies considerably between platforms.
Standard Java applications will run more slowly under a
dower implementation, but JOTSA applications run at the
same speed on al platformsaslong asthe display isthelim-
iting factor to the speed.

The main consequence of slow platforms on JOTSA ap-
plicationsis a jerky display.When a moving object cannot
be displayed at amost every pixe positionaongitspath, its
motion does not appear to be smooth. Most JOTSA appli-
cations will have a dider to control the rate of virtud time
and the user can slow down the flow of time if the display
quality isnot sufficient. In the example shown in Figures 2
and 3, such a dlider is brought up by pushing the Controls
button.

Thetimeit takes JOTSA to display a frame depends on a
number of factorsincludingthe size of thewindow to bedis-
played and the number and types of objectsto be displayed.
Thetimefor asingleupdateisa most independent of themo-
tion of the objects, but the speed of movement determines
how often the display should ideally be updated.

JOTSA alows the display to be broken up into several
rectangular pieces, called canvases. The display of theindi-
vidua canvases can be either synchronous or independent.
Inthe example in Figure 3, al of the moving objects arein
arectangular region between the sender and receiver boxes.
This small area (about 150 by 150 out of 630 by 325) isa
separate canvas and isthe only part that needs to be updated
often. The other six canvases only need to be updated when
an event occurs, typically less than once a second.

The maximum frame rate for a simple JOTSA applet on
different platformsis shown in Figures 4 and 5. In addi-
tion to processor type and speed, the frame rate depends on
a number of factors such as the particular Java implemen-
tation, the operating system, the display hardware and the
amount of memory on the target machine. Thefirst of these

=] Simulation 1: Prototcol 5: Pipelining
send List) sender receiver Received List
Frame Seq. Tries Frame Seq.
Frames Sentin Frames Received: o
Idle waiting for Frame
Timeouts{7} In: 5.8
. Reject
unavailable
Protocol & | AUtomatic —i I Sound off | Crestroy i | Start I Clear | Hide |
SCenario 1 | Scenario 2 I | Cantraol I Cammentary | Gantt |
1

Figure 2: Theinitia display after protocol 5 is chosen.

rlil Simulation 1: Prototcol 5: Pipelining: Scenario 1 i
send List) sender receiver Received List
Frame Seq. Tries Frame Seq.
0 0 1 Frames Sent: 7 Frames Received: o
1 1 1
2] 1 Waiting far ack # # 'i # I # waiting for Frame
3 1 1
4 0 1
5 1 1| Timeouts(7} In: 7.3
3 0 1
. Reject
unavailable
Protocol & | Automatic i I Sound off | Destroy i | Stop I Clear | Hide |
SCenario 1 | Scenario 2 I | 3) | Cantraol I Cammentary | Gantt |

] [7] Protocol Commentary

Protocol & allows pipelining. In these examples, the maximum sequence number is 7 which
allows for 8 sequence numbers and 7 outstanding frames. 7 frames can be sent before the
sender is blocked. The receiver has a window size of 1, meaning that it cannot accept frarmes
out of order. When it receives a frame, the receiver sends and ack for the last frame it has
accepted. When the sender receives an ack for frames it has buffered, it frees those buffers and
additional frames can be sent.

Protocol 5 scenario 1 sends 7 frames, Itis assumed that the sender has only 7 frames to send, Frame 3 is lost and frames
3,4 5, and & hawe to be resent when frame 3 tirmes out, The ack for frame 4 is lost but it doesn't matter since the ack far
tis received before frame 4 times out,

Frotocal 5, Scenario 1 Sender

1.5end frames 0-6

8, Frame 3 gets lost

15. Receive acks

26, send frames 3-6 again
20. Receive acks

Protocal 5, Scenario 1 Receiver

3, 5end acks for frames 0,1, and 2
12.Keep sending ack for 2 as wrong frames come in
26, Receive frames 3-6 correctly, send acks

Hide Protocol | Hide Send |

Hide Receive |

Hide General | Test | Close

Figure 3: A snapshot of the display and a commentary dial og after severa frames have been sent. Frame 3 has been lost.

Number of Objects

Patform 1 2| 4| 8|16|32|64|128| 256|512 | 1024
Sparc LX 50 Mhz 23| 22|19|16|15(13|11| 6| 4 2 1
Sparc 4 110Mhz 50| 49(47|43|36(28|19| 11| 9 6 3

Sparc 20 60 Mhz 102] 95(89]|80(64|59|39| 23| 15| 8

[&)]

Sparc Ultra167 Mhz | 158|143 (95|93 (61|34 40| 32| 18| 11 9
486 66 MHz Linux 28| 26|25(21|19|14| 9 5| 3| 15| 07
Pent. 1I00MHz Linux | 78| 82|74|64|54|37|25| 16| 12| 7 3
Pent. Pro200Win95 | 18| 18|18|18|18|18|18| 14| 7 3 3
Pent. Pro 200NT 93| 94[94(90|93(90|89| 58| 40| 26 14

Figure4: A tableshowingmaximum framerateswhen using
asmall window size of 100 by 100 on different platforms.

Number of Objects
Platform 1| 2| 4| 8|16|32|64|128]| 256|512 | 1024
Sparc LX 50 Mhz 910 9| 9| 8] 7| 8] 5] 3] 2 1
Sparc 4 110 Mhz 13]14[13]13[11]11] 9] 6] 6] 5 3
Sparc 20 60 Mhz 25|25 25|25 25[25]21] 19| 13] 10 6
SparcUltral67Mhz [25| 2625|2728 26]|17] 16| 11| 9 7
486 66 MHz Linux 16]17]15]14[14] 9| 7] 4| 3] 14| 07
Pent. 1I00MHz Linux | 15| 15| 14| 13|{13| 11|10 8| 10| 5 3
Pent. Pro200Win95 [18]18|18]|18|{18|17|15| 9| 6| 3 1
Pent. Pro 200 NT 14]14]15]15[14]13[13] 12| 11| 10 8

Figure5: A tableshowingmaximum framerateswhen using
alarge window size of 800 by 800 on different platforms.

figures shows the maximum frame rate for a small window
of size 100 by 100 pixels, and the second oneisfor alarge
window of size 800 by 800. The larger window represents
64 times as many pixelsasthesmaller one. In most cases for
the small window, the number of objects isthe main deter-
mining factor on the display rate. For thelarger window, the
number of objects does not significantly affect the display
rate until it exceeds some threshold.

The Pentium Pro platform is an exception to this. While
it is faster than most of the other systems as shown by
its NT performance, the Pentium Pro under Windows 95
has a maximum frame rate of less than 20 frames per sec-
ond, even for one object in a small window. This sur-
prising result was traced to the Java time function Sys-
tem.currentTimeMillis(). Thisfunction is supposed to re-
turn the system time in milliseconds, and JOTSA usesit to
computewhen toissuethe next display request. Consecutive
callstothisfunction should returnvalueswhich differ by O or
1, and this behavior was confirmed on the Sun systems and
on the Intel systems running Linux. Under NT differences
were either 0 or 10. However, under Windows 95 the non-
zero differences are either 50 or 60. This coarse granularity
of time prohibits JOTSA from making the precise calcula
tions needed for higher frame rates.

8 Discussion

Prior to the introduction of Java, many web-based anima-
tionsused amodel of execution based onthe X Window Sys-
tem [9]. In thismodel the software runs on the remote ma-
chine (the X client), and the display appears on theloca ma-
chine (the X server). There are threemajor disadvantagesto
thismodel. The computing burden ison the remote machine
requiring the software provider to supply sufficient comput-
ing power for al users. Secondly, the system puts a heavy
load on the network whilethe programs are running, making
the speed of the animation dependent on the network traffic.
Thirdly, while X servers can be obtained for most systems,
they are not normally installed on the most ubiquitous ma-
chines, those running Microsoft operating systems.

The Internet community has focused on Java as the lan-
guage for the web. Java holdsthe promise of platform inde-
pendence based on amodel of compile once, run anywhere.
To some extent this has been aready achieved with the core
of the Javalanguage. Inthe Javamode, the program iscom-
piled into an intermediate form and stored on theremote ma-
chine (theserver). Itisdownloaded to theloca machine (the
client) when it is accessed. The Java program is run on the
loca machine, usually with an interpreter. Once the pro-
gram has been downloaded there is no longer any demand
put on either the remote machine or the network. Since the
Java program is interpreted (or compiled on the fly at run
time), the same program will run on any system. However,
many problems still exist beforetrue platform independence
isachieved.

While the Java Application Window Toolkit (AWT) has
the same features on all platforms, the look and feel varies.
The differences may actualy be desirable under some cir-
cumstances, because the Java environment behavesin away
that isfamiliar to theuser on aparticular platform. However,
certain aspects of thisvariability makeit difficult to achieve
a satisfactory appearance on al platforms.

Fonts pose a particular problem when there is a need to
place text accurately among other displayed objects. The
size and shape of characters is different on different plat-
forms, since Java uses the text capabilities of the underly-
ing window environment. Consequently, the same character
string will take up a different amount of space when viewed
ondifferent platforms. InJava, thewidth of abox isspecified
by anumber of pixels, whilethewidth of astringisspecified
by thefont styleand size. A Java program can determinethe
widthin pixels of agiven string in agiven font, but thereis
no convenient method for ensuring that astring will fit inside
the box boundaries, other than by trial and error.

Sound support in Java is rather rudimentary. While au-
diofilescan be played, audio control islimited. Sound clips
can be started and stopped, but there is no convenient way
to tell when asound clip isfinished. This makesit difficult

to properly sequence sound clips. A solutiontothisproblem
has been promised in the upcoming Java Media Toolkit.

Another moreimportant problem for animation isthat the
speed of the hardware and the efficiency of the Java runtime
environment affect the speed at which Java programs run.
Unless care istaken, motion which isvery slow on one ma
chine will be very fast on another. JOTSA addresses this
aspect of platform-independent web-based animation. It is
particularly difficultin Java, sincethe user does not have di-
rect control of therepainting of thedisplay. JOTSA hasbeen
shown to be a powerful tool for web-based simulation and
animation of algorithmsand physical processes. It has also
been used for animation of datain systemswhere exact time
isacritical feature.

References

[1] R. S. Anir, J. A. Miller and Z. Zhang, “ Java-based query
driven simulation environment,” Proc. 1996 Winter Sm-
ulation Conference, pp. 786—793, 1996.

[2] K. Arnold and J. Godling, The Java Programming Lan-
guage, Addison-Wesley, 1996.

[3] J E. Baker, I. F. Cruz, G. Liottaand R. Tamassia, “ Algo-
rithm animation over the world wide web,”
http://Aww.cs.brown.edu/people/jib/Paper ssmocha.ps.

[4] J. Banks, S. Carson, and J. N. Sy, Getting Sarted with
GPSSH, Wolverine Software Corporation, Annandale,
Va, 1989.

[5] M. H. Brown, Algorithm Animation, MIT Press, Cam-
bridge, 1988.

[6] S. Bryson and Sandy Johan, “ Time management, simul-
tanaeity and time-critical computation in interactive un-
steady visualization environments,” Visualization 96, pp.
255-261, 1996.

[7] A.H.BussandK.A. Stork, “Discrete event ssimulation on
the world wide web using Java,” Proc. 1996 Winter Sim+
ulation Conference, pp. 780—785, 1996.

[8] S. W. Cox, “GPSSworld: A brief preview,” Proc. 1991
Winter Smulation Conference, pp. 59-91, 1991.

[9] E. Cuitler, D. Hilly and T O’ Reilly, The X Window System
in a Nutshell, 2nd edition, O’ Reilly and Associates, Inc,
1992.

[10] N. J. Earle and J. O. Henriksen, “The power and perfor-
mance of PROOF animation,” Proc. 1995 Winter S mula-
tion Conference, pp. 494-501, 1995.

[11] M. Folk and R. E. McGrath, “ The horizon project,” Fed-
eral Webmasters Workshop, Aug. 7, 1996.
http://hdf.ncsa.uiuc.edu/horizon/Webmaster.7.Aug.96/.

[12] T.A.Funkhouserand C. H. Sequin, “ Adaptivedisplay al-
gorithm for interactiveframeratesduring visualization of
complex environments,” Computer Graphics. Proceed-
ings of SGGRAPH 93, pp. 247-254, 1993.

[13] B. Myers, “Taxonomies of visual programming and pro-
gramvisualization,” J. of Visual Languagesand Comput-
ing, 1, pp. 97-123, 1990.

[14] A. A.B. Pritsker, and J. J. O'Reilly, “AweSim: Theinte-
grated ssmulation system,” Proc. 1996 Winter Simulation
Conference, pp. 481-484, 1996.

[15] D.M. ProfozichandD. T. Sturrock, “Introductionto SIM-
MAN/Cinema,” Proc. 1995 Winter Smulation Confer-
ence, pp. 515-518, 1995.

[16] K. A. Robbins and S. Robbins, Using exact time ani-
mation to show nonperiodicity, UTSA Computer Science
Technical Report, CS 97-4, 1997.

[17] S. Robbins, A microprogramming animation, UTSA
Computer Science Technical Report, CS 95-10, 1995.
http:/Ivip.cs.utsa.edu/per sonnel/srtechreps.html.

[18] S. Robbins, A JOTSA example, UTSA Computer Science
Technical Report, CS 96-13, 1997.
http:/Ivip.cs.utsa.edu/java/jotsahome/.

[19] S.Robbins, JOTSA collections, UTSA Computer Science
Technical Report, CS 97-5, 1997.
http:/Ivip.cs.utsa.edu/java/jotsahome/.

[20] S. Robbins, “A simple applet which movesan oval along
aling”
http:/Ivip.cs.utsa.edu/java/jotsahome/.

[21] S. Robbins, “An applet illustrating many JOTSA fea-
tures,”
http:/Ivip.cs.utsa.edu/java/jotsahome/.

[22] S. Rabhbins, “An exampleillustrating splits and merges,”
http:/ivip.cs.utsa.edu/java/jotsahome/.

[23] E.C. Russel, “SIMSCRIPT Il and SIMGRAPHICS tuto-
rial,” Proc. 1993 Winter Simulation Conference, pp. 223—
227, 1993.

[24] T.J. Schriber, Smulation using GPSS, John Wiley, New
York, 1974.

[25] J. T. Stasko, “The path-transition paradigm: A practi-
cal methodology for adding animation to program inter-
faces,” J. of Visual Languages and Computing, 1, pp.
213-236, 1990.

[26] J. T. Stasko, “Animating algorithms with XTANGO,”
SIGACT News, 23(2) pp. 6771, 1992.

[27] J.T. Staskoand E. Kraemer, “ A methodol ogy for building
application-specific visualizations of parallel programs,”
J. Parallel and Distr. Computing, 18(2) pp. 248-264,
1993.

[28] J. T. Stasko and D. S. McCrickard, “Real clock time an-
imation support for developing software visualizations,”
Australian Computer Journal, 27(3) pp.118-128, 1995.

[29] A. S. Tanenbaum, Computer Networks, Prentice Hall,
Third Edition, 1996.

[30] “The horizonimage data browser,”
http://imagelib.ncsa.uiuc.edu/imagelib/Horizon/.

