
A Three Pronged Approach to Teaching
Undergraduate Operating Systems

Steven Robbins
Department of Computer Science
University of Texas at San Antonio

srobbins@cs.utsa.edu

ABSTRACT
This paper describes an approach to teaching an undergraduate op-
erating systems course that relies on three aspects. First, a stan-
dard textbook is used for the basic theoretical material. Second,
programming projects are used to reinforce some of the material
covered from the textbook. Lastly, simulators are used to illustrate
other material. A key to the approach is to use experimentation by
the student to enhance understanding and prepare them for research.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Information Sci-
ence Education—Computer Science Education

General Terms
Experimentation

Keywords
operating systems, systems programming, curriculum

1. INTRODUCTION
The undergraduate operating systems course is taught in many for-
mats. Courses range from purely theoretical, in which students do
not use computers at all, to completely hands-on, in which they de-
sign and write an operating system or pieces of an operating system
from scratch. This paper describes a course that is intermediate
between these approaches. A standard operating systems book [4,
17, 18, 19] is used to cover the basic theoretical material. This is
supplemented by a UNIX systems programming book [10] that em-
phasizes communication, concurrency, and threads. Programming
projects play a major roll in the course and give students hands-on
experience. The emphasis is on issues of concurrency and synchro-
nization of communicating processes and threads. Lastly, there are
some operating systems topics that do not easily lend themselves
to programming projects. For these, simulators are used both to
demonstrate principles and to provide a workbench for doing ex-
periments. Having students propose hypotheses and then test them
with experiments can lead to a deeper understanding and prepare
students for doing research.

The rest of the paper is organized as follows. Section 2 discusses
the format of the course. Section 3 describes the major topics cov-
ered in the course. Section 4 gives details on what is covered in the
recitations. Section 5 describes the programming projects and sec-
tion 6 describes the simulators. Finally, section 7 discusses some
observations about the course.

2. COURSE FORMAT
Operating Systems is a required course for the undergraduate com-
puter science degree at UTSA. Most of the required courses for
the CS major, including Operating Systems, are 4 credits with a
3-hour per week lecture and a one hour per week recitation. The
recitations are taught by graduate teaching assistants, usually first
year PhD students. As in most CS programs, many of the gradu-
ate students are not native English speakers and some of them have
difficulty teaching undergraduates. Few of them have any teaching
experience. It is not always possible to find a teaching assistant that
can do a good job running problems sessions or teaching concepts.

The recitations for the undergraduate Operating Systems course
were designed so that the teaching assistants would not have to
do any teaching. The recitations are self-paced labs in which the
students are given detailed scripts to follow. The same scripts are
used each year. Often the goal is to have the students try something
out or learn how to use a tool. Each lab is designed to be completed
in 50 minutes with no previous preparation, other than having at-
tended the lecture and having a basic understanding of the course
material to date. The recitation labs are graded on a credit/no credit
basis. Each completed lab counts one point in the student’s final
average. The recitations are described in Section 4.

Students have access to labs containing PCs running Linux and
Windows XP as well as Sparc computers running Solaris. All of
the machines share a common file system containing the student
accounts. Most of the PCs, including all of those in the teaching
labs are dual-boot. The Linux and Solaris machines are available
remotely through SSH.

3. THE CURRICULUM
The course uses two textbooks. The first can be any traditional
undergraduate operating systems book [4, 18, 19], but currently we
are using the text by Silberschatz, et al. [17]. We take most of our
case studies and specific examples from UNIX. For this we use a
UNIX systems programming book [10]. This book forms the basis
for the programming assignments. The general topics of the course
are shown in Figure 1. For each topic, the relevant chapters of the
two books are given, along with which simulators and programming
projects relate to that topic.



Topic Text Simulator Programming
Early Systems Notes
Safety USP 2 R02
Processes OSC 3
Scheduling OSC 5 PS P01
Process Creation USP 3 P08
Unix I/O USP 4 IO
Files USP 5 P04
Special Files USP 6 ring
Communication and Concurrency - ringsUSP 7 ring
Threads USP 12 IO P02, P03
Synchronization OSC 6 PC, SP, ring
Signals USP 8 P05, P07, P08, P10, P11, P12
Network Communication USP 18 P03-P08, P10-P14
Disk Head Scheduling OSC 12 disk
Memory OSC 8,9 address

Figure 1: The curriculum. The simulators are described in Section 6 and the programming projects refer to Figure 3. (USP = UNIX
Systems Programming [10], OSC = Operating System Concepts [17])

4. THE RECITATIONS
Figure 2 lists the recitations that have been used. Often, there is not
time for all of these since there is no recitation during the first week
of the semester and another recitation is lost due to a holiday. One
of the recitation weeks is used for catch up, in which a student can
do the recitations that he/she has missed.

R01 Using the system
R02 Timing and static variables
R03 Process scheduling simulator
R04 Process scheduling simulator (continued)
R05 POSIX threads
R06 Ring simulator
R07 Ring simulator (continued)
R08 POSIX thread synchronization
R09 Producer-consumer simulator
R10 Network communication
R11 Disk head simulator
R12 Disk head simulator (continued)
R13 Address translation simulator

Figure 2: Recitation Topics

The complete set of recitations as well as the actual recitations used
in each of the past 5 years are available online [15].

The recitations meet in a computer lab with one Linux computer
per student. It would also work to have 2 students share a com-
puter if resources are limited. The goal of the first recitation is to
have the students successfully log onto the system and be able to
compile programs. Of the other 12 recitations, four involve pro-
gramming assignments and eight involve using simulators. Most
of the programming assignments start with a working program that
the students download and modify.

These labs could easily be used in an environment without a sep-
arate recitation. They could be used as weekly assignments since
they are all self-paced. Most of the recitations require that the stu-
dents create a web page containing their results. The created web

pages could be used to check that they have been completed. The
assignments have been designed to be graded pass-fail.

As an example of a programming recitation, in R08: POSIX thread
synchronization, students download a simple program [10, Program
13.1] along with a test program and a makefile. They compile and
run the program. Most students log on and complete this part in
the first 5 minutes of the lab. Program 13.1 is a simple counter
that can be incremented or decremented. It is made thread-safe by
protecting the count with a single static POSIX mutex lock. The
main program creates a number of threads that each increment the
counter a fixed number of times. All of the threads are waited for
and the final count value is displayed. If all goes well (as it should
with the original program) the count will have a predicted value.
The students then perform three types of experiments.

In the first experiment they remove (comment out) some of the mu-
tex calls and see if this has an effect on the output. Surprisingly (or
not) the locking seems to be unnecessary in that the correct results
are still achieved, at least most of the time. This is an example of
a program that (almost always) produces correct output, but is still
an incorrect program. Students have a difficult time grasping this
concept.

In the original program, the count is incremented with a single
count++ statement. This may actually be atomic on some systems,
while on others it still takes a very short time to execute, being im-
plemented with 3 machine instructions. Failure can occur only if
the CPU is lost during execution of this short code segment. In the
second experiment students replace thecount++ line with three
lines in which the count is first stored in a temporary variable, that
variable in incremented, and then the result if stored back in count.
This makes the unprotected code more likely to fail. Since they
have both Linux and remote Solaris environments available, they
do the tests on both systems and compare them.

In a third experiment, they add timing code to their main program
to see what penalty is occurred when the mutex calls are used and
calculate the time it takes to do one mutex lock and unlock pair.



R06 and R07 are examples of simulator labs. In the first of these,
students learn how to use the fork-pipe simulator. In the first lab,
they are guided through starting up and running the simulator on a
simple example and using most of the features of the simulator in
a closely guided procedure. In the second of these labs, students
use the simulator to explore several methods of protecting critical
sections. They explore the consequences of small modifications in
the code, basically following the procedure from [10, Section 7.3].

5. PROGRAMMING PROJECTS
It is hard to engage students when operating systems is taught pri-
marily as a theoretical course. Some concepts such as threads,
I/O and networking lend themselves to programming assignments.
Since concurrency and synchronization are underlying themes in
operating systems, several assignments illustrate these concepts.
The use of programming projects (other than to write or modify
an operating system) in an operating systems course is not new [3,
16]. What is different here is the extensive use of projects and the
way they are integrated into the course. One of the last topics in the
course is network communication, and the projects usually end with
an assignment that uses the UICI networking library [10, Chapter
18] which is described below. Network implementations often ex-
pose synchronization issues that were not present or not apparent in
the non-networked version. A list of some of the projects used in
the last ten years appears in Figure 3. All of these are available on
the web [15].

P01 Four scheduling algorithms
P02 Comparing Java and POSIX threads
P03 Threaded network server
P04 File synchronization
P05 Parallel make
P06 Marshaling parameters
P07 License manager
P08 Proxy server
P09 Process ring
P10 Peer to peer communication
P11 Network audio server
P12 Web redirection
P13 Parallel calculator
P14 Network ring

Figure 3: Programming Projects

Until recently, the programming assignments each year have had a
theme. Before starting the semester I would decide what the last
programming assignment would be and then give preliminary as-
signments to build the support structure for this last assignment,
giving it the flavor of a term project.

An example of this would be a simple parallel make. Programming
in C on a UNIX system, the final program would be given a list of
C source files, the first of which contains a main function. They
would farm out the compilation of each source file into an object
file. When they were completed, all of the object files would be
linked together to give an executable. Early assignments involve
parsing the input parameters (the source file names). They would
compare the modification dates of the source and object files and
only recompile those modules that were out of date. For each source
file that needed to be compiled, they would pass the name to a sep-
arate process using pipes. Later they would use threads of a single

process to do the compiles. These two implementations would pro-
vide the basis of a discussion of the differences between commu-
nication and synchronization using separate processes and threads
with shared memory. Since the students are (at least they were until
recently) running on machines with a single CPU, these implemen-
tations had little speedup. One of the last topics of the semester is
network communication and they would modify their program to
run on a network of workstations. These machines share a common
file system through NFS, so only the names of the files need to be
passed among machines. For extra credit, they could pass the files
through the network.

The semester-long projects gave the course a unifying theme. Each
project had several parts with due dates throughout the semester.
These worked well for many years. A few years ago, however,
UTSA switched to Java (from C) in the beginning programming
courses, so students taking operating systems now have only one
semester of C programming. Students with weak programming (or
study) skills would often fall behind. Since each assignment built
upon the previous one, these students often completely gave up on
the programming projects. During the last year, I have moved to
shorter, independent assignments, and this has worked out better
for these students.

One such shorter assignment (P01 in Figure 3) requires students
write code to produce a Gantt chart for each of four scheduling
algorithms: first-come, first-served; shortest job first; preemptive
shortest job first; and round robin. This assignment assumes that
there are only two processes, each with two CPU bursts and one I/O
burst. I have also introduced programming projects that used both
Java and C. One such project (P02 in Figure 3) compares POSIX
and Java threads. Students start by writing threaded programs in
each language to calculate the average value ofsin2 x by summing
random values. Students do this without any synchronization and
determine whether the programs give the correct answer. After this
is turned in, I distribute sample code so the students can use it in
the next part of the assignment if their first part was not working.
In the next part they add synchronization and compare the accuracy
and timing with their earlier, non-synchronized, code.

5.1 Network Communication
We spend about one week of lectures near the end of the semester
discussing network communication. UTSA has a separate network-
ing course, but unlike operating systems, the networking course is
not required of all majors. In operating systems we concentrate
on the client-server model of communication, mainly connection-
oriented communication. Earlier in the semester, the client-server
model is introduced using named pipes (FIFOs) for communication
between unrelated processes on the same machine. Some of the
programming projects use pipes for communication and synchro-
nization between processes.

Typically, there is a large amount of overhead in discussing how to
write client-server code in a UNIX environment. The socket API
uses complicated data structures to store connection information.
Dealing with translations between host names and IP addresses as
well as network byte order adds complications that are irrelevant to
the higher level concepts. The goal is to get students to be able to
use network programs that illustrate concurrency and synchroniza-
tion issues that may not be apparent when programs are running
on a single-CPU system, even if multiple processes or threads are
being used.



UICI prototype description (assuming no errors)
int u_open(u_port_t port) creates a TCP socket bound toport and sets the socket to be passive

returns a file descriptor for the socket
int u_accept(int fd, char *hostn, waits for connection request onfd;

int hostnsize) on return,hostn has firsthostnsize-1 characters of the client’s host name
returns a communication file descriptor

int u_connect(u_port_t port, initiates a connection to server on portport and hosthostn.
char *hostn) returns a communication file descriptor

Figure 4: The UICI Interface

In the fall of 1991, I invented the UICI (Universal Internet Commu-
nication Interface) as part of a final exam problem. The goal was to
abstract out the higher level concepts of network communication.
Students could obtain file descriptors for doing network commu-
nication using an interface that is based on host names and port
numbers. The current version of UICI is not much different from
the one described in 1991. The UICI interface is shown in Figure 4.
There are just three functions which take simple parameters, inte-
gers and strings. After a connection is set up, all communication
is done with standard UNIXread andwrite calls. Students are
given the source code for UICI and are encouraged to use it in other
courses or after graduation.

6. THE SIMULATORS
Seven simulators are used to give students hands-on experience with
several concepts that would otherwise need to be covered in a purely
theoretical way. Each of the simulators can be run as a Java applet
on the web or as a Java application with additional functionality.
Running as an application gives the simulator access to the local
machine so that local configuration is possible. Each simulator has
a user’s guide and is freely available on the web [14]. A brief ex-
planation of each simulator follows.

6.1 Process Scheduling (PS)
The process scheduling (CPU scheduling) simulator [6] supports
the following algorithms: first-come, first-served (FCFS); shortest
job first (SJF); shortest job first approximation (SJFA); preemptive
shortest job first (PSJF); preemptive shortest job first approximation
(PSJFA); and round robin (RR). It allows users to specify proba-
bility distributions for CPU and I/O burst times for processes as
well as interarrival times and durations. It will generate statistics
and Gantt charts allowing students to compare the action of differ-
ent algorithms with the same set of processes. Students experiment
with this simulator in two recitations. The first recitation introduces
them to the simulator and guides them through setting up a simple
experiment. The second recitation requires more complex experi-
ments comparing FCFS, SJF, and RR with three different values of
the quantum. Students learn that as the quantum becomes larger,
Round Robin approaches FCFS in performance.

After the recitation, students are given a project in which they are
to use the simulator on their own. Several different projects have
been developed. In some of these, students are given a statement
and asked to design an experiment to test its validity. Some of the
statements used include:

a) If 20 similar processes are scheduled using Round Robin
(RR) with a small enough quantum, the result for one of
the processes is similar to running it on a non-timesharing
system with no other processes, but using a CPU that is 20
times slower.

b) Ignoring context switch time, the average waiting time for
RR with a given quantum will be close to that of SJF when
the quantum is small.

c) The average waiting time for RR increases (decreases) with
increasing quantum.

In other types of projects students are asked to design an experi-
ment that shows a particular behavior, such as one in which PSJF
has less than half the average waiting time of SJF. To challenge the
students I have asked them to design an experiment in which PSJF
performs much worse (as measured by average waiting time) than
SJF, or in which FCFS performs much worse than SJF. These seem
counter-intuitive to most students (and to me also), but such exper-
iments do exist. In all of the projects, the student needs to have a
good understanding of the conditions under which each algorithm
performs well.

I often use this simulator to introduce the concept of the load av-
erage, the average number of processes in the ready queue. UNIX
systems sometimes report this value as an indication of the load on
the CPU and traditionally use this value in calculating process pri-
orities [5, Section 4.4]. Little’s Law [2, Section 30.3] implies that
the load average is the total waiting time divided by the time for the
experiment. Since these two latter values are directly available from
the simulator statistics, students can use these to calculate the load
average. The load average is also useful in determining the cost of
a context switch, since each context switch delays those processes
that are ready.

Students can make predictions about how a non-zero context switch
time will affect different scheduling algorithms. Often they predict
that preemptive algorithms such as PSJF which generate more con-
text switches will pay a bigger penalty as the context switch time
grows than nonpreemptive algorithms (such as SJF). This is often
not the case as PSJF will typically have a smaller load average than
SJF. They can test this both analytically and by running the simula-
tor.

6.2 Synchronization (PC)
This simulator [7] models a simple bounded buffer producer-
consumer problem on a single CPU with one producer and one
consumer. The code is similar to that given in several standard
textbooks [17, page 192][18, page 221][19, page 108] and does not
include any protection for the critical sections. This simulator is
usually used as a demonstration of what can go wrong when shared
variables are not protected. Students can run the simulator to com-
pletion or single step thought the code and force a context switch
at any time. The internal state of the variables is always displayed.
An interesting insight is that when a problem does occur and the
internal state of the program becomes inconsistent, it may not have



an effect on the output generated (which items are consumed) until
long after the failure has occurred. This is useful in illustrating how
difficult it is to debug programs with synchronization errors, since
by the time the error has been detected (if at all) it is long past the
time at which the error occurred.

6.3 Starving Philosophers (SP)
This simulator [8] animates a standard solution to the dining
philosophers problem using monitors. It is useful as a demonstra-
tion of how monitors are implemented using various queuing strate-
gies and how processes move among these queues as the program
progresses. It also illustrates how the standard solution to this prob-
lem allows for starvation, hence the name of the simulator.

Students can step through the program and see how the states of
the processes (philosophers) vary. The entry and exit queues of the
monitor are shown, as well as the waiting queue for each philoso-
pher’s condition variable. The simulator can also execute a more
complicated solution that does not allow starvation.

6.4 Forks and Pipes (ring)
This simulates [9] a C program that usespipe, fork, dup2, and
wait. It allows students to write their own programs or run canned
programs included with the simulator. The simulator provides a
pictorial view of the relationship among the processes, pipes, and
file descriptors as you single-step through the program. One of its
main purposes is to show how redirection can be used to make sev-
eral topologies of pipes connecting processes that have a common
ancestor. One program is a ring of processes [10, chapter 7] that
can communicate through pipes using standard input and output.

Before having access to this simulator, I would often draw diagrams
on the board showing the results of various combinations offork,
pipe, dup2 andclose. It was not possible for the students to
reproduce these diagrams in their notes, sincedup2 andclose
require that lines from the diagram be erased. The simulator allows
a simple demonstration of these diagrams, which the students can
reproduce at their leisure.

Back when computers were a lot slower, one of my standard exam-
ples would be a C program that would create a number of processes
in a loop and then have each process print an identifying string. The
order of the output would be different on each run and sometimes
would be garbled as pieces of one output line would be intermin-
gled with lines generated by other processes. With current machines
which are much faster, such programs very rarely (one run in a hun-
dred) garble lines and almost always produce the output in the same
order. The simulator can be used to show what can happen. I use
this as an example to illustrate that just because a program produces
the correct output (almost) all of the time, this does not necessarily
imply that the program is correct.

The simulator also supports loops, creating variables, assignment
statements, printing to standard error, reading from standard in-
put, writing to standard output, semaphores, and random number
generation. The main example illustrates what can happen when a
number of processes write to a shared resource, with or without ex-
clusive access to that resource. Students can experiment with how
scheduling of the processes affects the output generated and how
the non-atomic printing in a C program can cause garbled output
when no additional synchronization is used. The simulator is ro-
bust enough to illustrate a leader election algorithm on a ring of
processes [1] [10, Section 7.8].

6.5 Disk Head Scheduling (disk)
Disk head scheduling is a topic that has traditionally been included
in an operating systems course because the scheduling used to be
done by the operating system. As disk drives became more com-
plex, the internal structure of the disk became hidden from the op-
erating system and scheduling was more appropriately done by the
disk drive itself. The main ideas remain the same and most cur-
rent operating systems books still address this issue [17, Section
12.4] [18, Section 11.5] [19, Section 5.4.3]. The simulator [11] al-
lows students to obtain graphical and statistical information about
the standard algorithms. It also allows examination of the conse-
quences of having the operating system schedule the head move-
ment when the geometry of the disk is different from the model that
the operating system uses. This is most apparent when the drive it-
self remaps bad blocks in a way that is transparent to the operating
system.

We use this simulator in two recitations. In the first recitation, the
students use the simulator to reproduce the results from the exam-
ples in their text. They also make longer runs that would be difficult
to trace by hand. Almost all textbook examples assume that all re-
quests have been made before the algorithm executes. The simulator
allows requests to come in at random times and the students can ad-
just the distribution of requests and arrivals. The second recitation
has them explore the consequences of bad blocks that are transpar-
ently remapped by the disk. In this case a file that the operating
systems considers contiguous may be fragmented on the disk. The
students explore the relationship between the fraction of bad blocks
and the disk access time.

6.6 Address Translation (address)
The address translation simulator [12] illustrates address transla-
tion in a demand paged virtual memory system with one or two-
level page tables. The simulator has a number of canned examples
for the students to work through and presents them in a randomized
order. The students can turn in a generated HTML file containing
their work. The simulator has a built-in help section that can either
give hints or do the next step if students get stuck. Student’s under-
standing of address translation (as indicated on exams) increased
after we started using this simulator in the recitations.

The simulator presents information about the machine architecture
including physical and logical address size, page table sizes and
translation lookaside buffer (TLB) size. Students are given a binary
logical address and must translate this into a physical address. They
do this by segmenting the logical address and cutting and pasting
the segments into parts of the simulator. For example, the simulator
can display the TLB (which is just a table of 0’s and 1’s) and the
student must find the appropriate entry in the TLB if it exists. First
they must segment the TLB into page number and frame number by
determining how many bits of each are in an entry. Then they paste
the page number into the TLB, which highlights the corresponding
frame number if it is found. If unsuccessful they must do lookups
in one or more page tables. They can display the page tables and
scroll through them until the appropriate entry is found, or paste
the page number into the page table to highlight the corresponding
entry. A sophisticated help facility is available if they get stuck.
It can show the the steps they need to perform and which steps
were successfully completed so far. It can give a description of the
next thing to do, and can even perform the next step for them. The
simulator keeps a record of all the steps performed including how
much help was needed.



This simulator is best used to allow students to experiment with ad-
dress translation and allow them to make as many mistakes and get
as much help as needed until each translation is done successfully.
I grade this on a credit/nocredit basis. They get credit as long as
they complete a few single level problems and a few 2-level page
table problems, even if they let the simulator do most of the work
for them. Experience has shown that most students require little
assistance from the simulator after they have used it for a while.

6.7 UNIX I/O (IO)
This simulator [13] demonstrates the relationship among several
tables that are involved in UNIX I/O. It displays the contents of the
file descriptor table, the system open file table, and the in-memory
inode table as students single-step through programs. The simulator
supports process (using fork) and thread (POSIX) creation. It is
used mainly for demonstrations in class. A nice feature is the ability
to step back through executed programs. This is very useful during
classroom demonstrations to answer student questions about what
happened in a previous step. At any point the state can be saved and
later restored to show the result of a particular set of operations.

This simulator is useful for illustrating how the file offset behaves
when a child process is created after a file is opened. The file off-
set in this case is a variable that is shared between processes. It
is the simplest such example of a shared variable, since students
only need to understand the basic UNIX I/O operations (open, read,
write, close) and process creation (fork). Before this simulator was
available, I had to draw complex diagrams on the board which were
difficult for the students to absorb. With the simulator, they can re-
run the demonstrations on their own and use the results as a basis
for asking questions that would otherwise be hard to phrase.

7. CONCLUSIONS
This paper described an undergraduate operating systems course
that combines traditional textbook material with programming
projects and simulators to increase student understanding and ex-
perience. Although the course uses recitations to introduce the
students to some of the simulators and short programming assign-
ments, these recitations are self-paced and could be used as weekly
assignments without a formal recitation.

Semester-long projects that build on previous assignments work
well for strong, well-prepared and well-motivated students. How-
ever, weaker students or those with insufficient programming skills
tend to not complete the early assignments and cannot continue
with the later ones. Shorter, independent assignments work better
for these students.

The course described here has evolved slowly over time so there
is no way to compare student performance between this version
of the course and a more traditional one. Almost all of our eval-
uations are anecdotal. Students seem to enjoy using the simula-
tors and have made favorable comments about the programming
assignments. The address translation simulator, in particular, has
improved student performance on related questions on exams.

All of the material described here is freely available (except for
the textbooks which most students still pay for). The most unique
aspect of the course is the simulators. Instructors are encouraged to
visit the web site [14] and try running the simulators directly from
the browser. No installation or configuration is needed to try them.
The simulators are independent and any combination of them can
be easily incorporated into an existing operating systems course.

8. ACKNOWLEDGMENTS
The simulators and curriculum development for the course de-
scribed here have been supported by several NSF grants: USE-
0950407, DUE 9750953, DUE-9752165, DUE-0088769. Some of
the projects described in Figure 3 were developed by K. Robbins.

9. REFERENCES
[1] A. Itai and M. Rodah, ”Symmetry breaking in distributive

networks,”Proc. Twenty-Second Annual IEEE Symposium on the
Foundations of Computer Science, 1981, pp.150-158.

[2] R. Jain,The Art of Computer Systems Performance Analysis, John
Wiley & Sons, Inc, 1991.

[3] G. Nutt, Operating System Projects for Windows NT,
Addison-Wesley, 1998.

[4] G. Nutt, Operating Systems, Third Edition, Addison-Wesley, 2003.
[5] S. Leffler, M. McKusick, M. Karels, and J. Quartermain,The Design

and Implementation of the 4.3BSD UNIX Operating System,,
Addison Wesley, 1988.

[6] S. Robbins, S. and K. A. Robbins, “Empirical exploration in
undergraduate operating systems,”Proc. 30-th SIGCSE Technical
Symposium on Computer Science Education, (1999) pp. 311-315.

[7] S. Robbins, “Experimentation with bounded buffer
synchronization,”Proc. 31-st SIGCSE Technical Symposium on
Computer Science Education, (2000), pp. 330–334.

[8] S. Robbins, “Starving philosophers: Experimentation with monitor
synchronization,”Proc. 32-nd SIGCSE Technical Symposium on
Computer Science Education, (2001), pp. 317–321.

[9] S. Robbins, “Exploration of process interaction in operating
systems: A pipe-fork simulator,”Proc. 33-rd SIGCSE Technical
Symposium on Computer Science Education, (2002), pp. 351–355.

[10] K. Robbins and S. Robbins,UNIX Systems Programming, Prentice
Hall, 2003.

[11] S. Robbins, S., “A disk head scheduling simulator,”Proc. 35-rd
SIGCSE Technical Symposium on Computer Science Education,
(2004), pp 325–329.

[12] S. Robbins, “An address translation simulator,”Proc. 36-th SIGCSE
Technical Symposium on Computer Science Education, (2005), pp.
515–519.

[13] S. Robbins, “A UNIX concurrent I/O simulator,”Proc. 37-th
SIGCSE Technical Symposium on Computer Science Education,
(2006), pp. 303–307.

[14] S. Robbins, Simulators for teaching operating systems, 2006. Online.
Internet. Available WWW:http://vip.cs.utsa.edu/simulators

[15] S. Robbins, Operating Systems Curriculum, 2008. Online. Internet.
Available WWW:http://vip.cs.utsa.edu/OS

[16] R. Rybacki, K. A. Robbins, and S. Robbins, “Ethercom: A study of
audio processes and synchronization,”Proc. 24-th SIGCSE Technical
Symposium on Computer Science Education, (1993) pp. 218–222.

[17] A. Silberschatz, P. B. Galvin and G. Gagne,Operating System
Concepts, Seventh Edition, John Wiley and Sons, Inc, 2005.

[18] Stallings, W.,Operating Systems: Internals and Design Principles,
5th Edition,, Prentice Hall, 2004.

[19] A. Tanenbaum,Modern Operating Systems, Second Edition,
Prentice Hall, 2001.


