
JOTSA Collections

Steven Robbins

November, 1996

Technical Report CS-97-xx

Abstract. This technical report describes how JOTSA han-
dles grouping objects to that they can be manipulated to-
gether.

Division of Computer Science
The University of Texas at San Antonio
San Antonio, TX 78249

May 18, 1997 at 1:48 pm





1 The problem

In animations it is sometimes convenient to consider a collection of objects as a group which
can be manipulated as a unit. You can think of this as a method of making JOTSA objects
which are more complicated than the basic object types.

2 How it works

In JOTSA when an object, called the slave, is linked to another object, called the master,
certain operations applied to the master affect the slave. These include operations involving
position and size. When the master is moved, the slave follows. When the master has its
size changed with scaling factors, the slave is also scaled. JOTSA supports separate scaling
factors in both the x- and y-directions.

When a slave is linked to a master, the slave’s position is specified relative to the master,
rather than in absolute terms. When the master is scaled, the relative position of each of its
slaves is also scaled. Since the position of most JOTSA objects corresponds to the center
of the object, scaling an object affects objects linked to it in a natural way.

3 Some examples

Figure 1 shows two views of stacked rectangles. The blue rectangle is on top of the red one.
On the left they are shown normal size. Both rectangles have the same size and the distance
between their centers is the same as their height.

b) c)a)

Figure 1: Two rectangles, one on top of the other. In diagram a) they are shown normal size.
Diagram b) shows the result of scaling the two rectangles individually by a factor of 1/2 in
the y-direction. Diagram c) shows the result of the same scaling on the collection.

Suppose the top rectangle (the slave) is linked to the bottom one, the master. The po-
sition of the top rectangle is specified by the distance between its center and the center of
the master. If the master is scaled in the y-direction by a factor of 1/2, the slave will also

1



be scaled and its distance to the master will be reduced. The result is shown on the right.
Scaling the master has the effect of scaling the collection in a natural way.

Figure 2 shows a similar situation with two rectangles with the center of one directly
above the right edge of the other.

a) b)

Figure 2: Two rectangles, one on top of the other.

Figure 3 shows a similar situation with a rectangle and circle.

a) b)

Figure 3: A rectangle with a circle on top.

In each of these cases, one of the two objects was distinguished as the master and the
other as the slave. In fact, their roles could have been reversed. A more symmetric treatment
would have both objects as slaves linked to a master at the center of the collection. This is
shown in in the left part of Figure 4. The master object is a small green circle. The two slave
rectangles have their centers at the same position as the center of the master. On the right is
shown the situation after the master has been scaled in the y-direction by a factor of 1/2. If
we ignore the master object, it looks identical to diagram on the right side of Figure 1.

Figure 5 shows a more complicated configuration. The circle is the in the center of the
collection of a number of rectangles of various sizes. On the right is shown then configu-
ration scaled by a factor of 2 in the x-direction and by 1/2 in the y-direction. As long as

2



a) b)

Figure 4: Two rectangles, one on top of the other.

the centers of all of the rectangles are given relative to the circle, and the dimensions of the
rectangles are simultaneously scaled when the center is scaled.

a) b)

Figure 5: A collection of rectangles.

The key to successful scaling is that the position of an object be specified in terms of the
collection’s center. For this to work, both the object and the collection must have a natural
notion of center. This is true for rectangles, ovals and strings. Lines are handled differently
in JOTSA, as the two endpoints are handled independently. It is the centers of the endpoints
that need to be manipulated.

Show a figure with two rectangles connects with a line segment having an arrow.

4 Making Collections in JOTSA

JOTSA provides a class calledJotsaAnimationCollection for specifying a collection of
objects linked to a given master object. The collection is manipulated by manipulating the

3



master object. The master can be moved or scaled and the collection will move or scale with
it. The constructor is

public JotsaAnimationCollection�JotsaAnimationObject master��

The following methods in theJotsaAnimationCollection class are available:

public JotsaAnimationObject get�master���

which returns the master object of the collection.

public void insert�JotsaAnimationObject obj��

which inserts an object in the collection. This links the object to the master of the collection.
The object will have the same position as the master.

public void insert�JotsaAnimationObject obj� int xoff� int yoff��

which inserts an object in the collection while setting the relative position of the object form
the master.

public void set�scale�double s��

which scales the collection by scaling the master. This scales in both the x-direction and
y-direction.

public void set�scale�double sx� double sy��

which scales the collection by scaling the master. The x-direction scaling and the y-direction
scaling can be separately set.

public void scale�scale�double s��

which scales the collection by scaling the master. The new scaling is applied to the old one
so that the new scale factor is the old one multiplied bys.

public void scale�scale�double sx� double sy��

which scales the collection by scaling the master. This is similar to the one above except
that the scale factors for the two dimensions can be set separately.

public JotsaAnimationCollection duplicate���

which makes a new collection which is identical to the old one. The master and all of the
objects in the collection are duplicated so that changing and object in the new collection has
no effect on the old collection.

public void merge�JotsaAnimationCollection col��

which combines two collections. All of the objects in the collectioncol except the master
are moved into the current collection. The scalings and positions of the objects incol are
modified so that they do not change their absolute size or position. If this is called while the
master ofcol is moving, the final position ofcol is used.

4



5 An example illustrating merges and splits

5.1 The merge-split problem

5.2 A merge-split visualization

In this visualization a cell is represented by a square. Initially the square has a single color.
When it is split, it is shrunk vertically into a rectangle of half the original height and du-
plicated. Two new rectangles of different colors are created and each is put on one of the
copies of the duplicated rectangle, forming two squares. Each one has a solid rectangle on
top.

To merge two squares, each is shrunk horizontally by a factor of 2 and the two resulting
rectangles are put side by side forming a single square.

Figure 6a) shows an initial cell before any splitting or merging. Figure 6a) show the
result have this cell splits. Figure 6c) Show the result of the two cells in b) merging. It is
possible to recover the entire split-merge history from this cell representation. If the top half
of a cell is a rectangle of a single color, the last operation performed on the cell was a split.
The entire history of the cell before the split occurred is contained in the lower half of the
cell. If the top half is not a solid rectangle, the cell was generated by merging two cells and
the left and right half each contain a complete history of the one of the two cells that merged.

For example, the left side of Figure 5 represents a cell which just underwent a split since
the top half of the square is a rectangle of a single color. The bottom half represents the
history of the cell before it was split. Since the top half of this (the top half of the bottom
half) is not of a solid color, that cell was formed by the merging of two cells, one of which
(the left part) had no previous split or merge operations. The other cell is represent by the
lower left quarter of the square and was the result of merging two cells, one of which had
been split and the other had no previous splits or merges. while the other

a) b) c)

Figure 6: Diagram a) shows an initial cell before any splitting or merging. Diagram b)
shows the result after a split. Diagram c) shows the result of merging the two cells from
b).

5



5.3 An applet to visualize merges and splits

This section describes an applet which shows how JOTSA can be used to visualize splits
and merges. Figure 7 shows the applet display after a single split has occurred.

Figure 7: The applet to illustrate splits and merges. It is shown after a single split.

To create a new cell, click onMake Group. A square with a solid color appears. To split
a cell, first select the cell as group 1, and click onSplit G1. A cell is selected as group 1
by clicking Select G1 and then clicking near the cell. The cell whose center is closest to
the place where the mouse was clicked is selected as group 1. The selected group 1 cell is
shown with a small green circle at its center.

After the split there are two new cells side by side. To split one of these again, select it
as group 1 and clickSplit G1 again.

The cells can be dragged around with the mouse. To do this, clickDrag Group and click
the mouse button near the cell you wish to move. The cell whose center is closest to the
mouse when it was clicked will follow the mouse until the button is released.

To merge two cells, select one as group 1 by clicking onSelect G1 and clicking near the

6



cell to be selected. Now select a cell to be group 2 by clicking onSelect G1 and clicking
near that cell. The cell selected as group 2 is shown with a blue circle at its center. Merge
the cells by clicking onMerge G1 G2.

The other two buttons are mainly for debugging. TheShow Collectionbutton displays
a list of the current collections and theShow Disp button displays the number of JOTSA
objects currently displayed. Output for each goes to the Java console.

The two sliders on the bottom of the screen represent the time it takes to do a split or
merge in milliseconds, and the rate at which virtual time moves.

5.4 Implementation Details

In this application, a cell is represents by a collection of JOTSA objects. Each collection has
a master object at its center which is a circle. Normally this master is not displayed, but is
shown when the object is selected as group 1 or group 2. TheJotsaAnimationObject

methodsset�inhibit�display and clear�inhibit�display are used to make this
master object visible or invisible. The color is changed byset�color. A cell is represented
by the master and a collection of squares all of the same size. These squares are scaled into
rectangles and their positions relative to the center of the master are set so they form a col-
lection of rectangles that are fitted snugly together.

The classSplitMergeObjects manages the collections. It keeps a list of collections
and has methods for inserting and removing collections from the list. There are also methods
for determining the position of a collection and which collection is closest to a given point. It
also contains methods for creating master objects and the pieces that make up the collections.
It uses the JOTSAColorListutility to choose colors for the various parts of the collections.
It is described fully in Section 6.

The Drag Group operation is accomplished just by moving the master.Make Group
makes a new collection containing a master circle and a solid rectangle. The groups are kept
in a vector. The vector is scanned when it needs to be determined which of the collections
is closest to the mouse.

5.4.1 The Split

The code to implementSplit G1 is shown in Figure 8. The split thread is passed the applet,
the set of objects, the collection to move and the time to move in each step. ASplit G1 is
accomplished in 5 steps.
Step 1. Shrink the collection by a factor of 2 in the y-direction and wait until it is
done. The center of the master must move along down as the scale is changed in such
a way the the bottom edge of the collection does not move. The movement is done with
path�create�along�line with the x-coordinate unchanged and the y-coordinate mov-
ing down by one fourth of the size of the object. As it moves the scale in the y-direction is
changed for 1.0 to 0.5 usingset�scale�linear. The time to move is set usingtimes�set.
JotsaForceRedisplaycauses JOTSA to redisplay immediately. The thread then waits for
the movement to complete usingJotsaWait��. This atomicly activates the object, instructs
the object to notify the thread when it is done moving, and suspends the thread. When the

7



thread wakes up the master has a scaling factor of 1/2 in the y-direction and has moved down
a bit.
Step 2. Move everything into a new collection which has a scale factor of 1.0. The mas-
ter will be always kept so that it has a scale factor of 1 in both dimensions when it is not
undergoing a split or merge. We could accomplish this by adding additional scaling to each
object in the collection and the resetting the scale of the master. Unfortunately, this causes
the pieces to temporarily have the wrong size. So instead, we create a new collection with
an unscaled master and move each object from the old collection to the new one. As an ob-
ject is moved, its scale and position relative to the master are adjusted so that it stays the
same place with the same size. All of this is accomplished with themerge method of the
JotsaAnimationCollection class.

Step 2 starts by removing the old collection from the list of collections. Then the method
reset�to�final is used to set the master’s position to its final position along the path that
it has moved. A new master and a new collection are then created. Themerge method then
moves all of the objects from the old collection into this new one. The new collections is
added to the list of collections and the old master is removed from the list of displayed ob-
jects.
Step 3. Make a collection which is identical to this one. This is the split operation. The
collection is duplicated using theduplicatemethod of theJotsaAnimationCollection
class. This is accomplished by making a new master and a new collection, making a copy of
each object in the collection and linking it to the new master in the same way as the original.
This is done with theduplicate method of theJotsaAnimationObject class. When a
JotsaAnimationObject is duplicated, copies of all reference variables are made so that
the two objects can be independently modified.
Step 4. Put different colored rectangles on top of each collection. A new rectangle is in-
serted in each collection to make a full square. The methodcreate�split�objectmakes
a square. This object is then scaled in the y-direction by a factor of 1/2. This procedure is
done once for each of the two collections.
Step 5. Move the new collection to the left a distance twice the width of the collection
and wait for completion. The movement is done in a way similar to Step 2 andJotsaWait

is again used to wait until the motion is complete. The position of the new master is then
set to its final position.

In summary, all of the objects in the collections (except the master) are squares with the
appropriate scaling factors. When the collection is shrunk, it is done by shrinking the master.
After the shrinking is complete, a new collection is created with unit scaling factors and the
objects from the old collection are merged into the new one.

5.4.2 The Merge

The code to implement theMerge G1 G2 thread is shown in Figure 9. The Merge thread is
passed the applet, the set of all objects, the two collections to merge, and the speed at which
to move the objects during the merge.rsize is the size in pixels of one of the collections.
Step 1. Shrink each collection horizontally while moving them together. First the initial

8



package split��

import java�awt���
import java�awt�image���
import java�util�Vector�
import jotsa���
import jotsa�utility���

public class Split extends JotsaWaitingThread �

JotsaAnimationCollection col�
JotsaAnimationApplet ap�
SplitMergeObjects objs�
int speed�value�

public Split�JotsaAnimationApplet ap� SplitMergeObjects objs�
JotsaAnimationCollection col� int speed�value� �

super�ap��
this�ap 	 ap�
this�objs 	 objs�
this�col 	 col�
this�speed�value 	 speed�value�
start���




public void run�� �
int init�x�
int init�y�
int rsize�
JotsaAnimationObject master�
JotsaAnimationObject mastertemp�
JotsaAnimationObject tempanim�
JotsaAnimationCollection coltemp�
JotsaAnimationCollection colnew�
JotsaAnimationObject masternew�

if �col 		 null� return�
rsize 	 objs�get�rect�size���
master 	 col�get�master���
init�x 	 master�get�firstx���
init�y 	 master�get�firsty���

�� Step �
 Shrink the collection by a factor of � and wait until done� ��
master�path�create�along�line�init�x�init�y�init�x�init�y�rsize����
master�set�scale�linear������������������
master�times�set�speed�value��
ap�JotsaForceRedisplay���
JotsaWait�master��

�� Step �
 Move everything into a new collection which is not scaled� ��
objs�remove�collection�col��
master�reset�to�final���
mastertemp 	

objs�create�master�object�init�x�init�y�Color�blue��
coltemp 	 new JotsaAnimationCollection�mastertemp��
col�merge�coltemp��
objs�add�collection�coltemp��
ap�JotsaRemoveObject�master��

�� Step �
 Make another collection which is identical to this one� ��
colnew 	 coltemp�duplicate���
objs�add�collection�colnew��

�� Step �
 Put different colored rectangles on top of each collection� ��
tempanim 	 objs�create�split�object���
tempanim�set�scale����������
coltemp�insert�tempanim����rsize����
tempanim 	 objs�create�split�object���
tempanim�set�scale����������
colnew�insert�tempanim����rsize����

�� Step �
 Move the new collection to the left� ��
masternew 	 colnew�get�master���
masternew�path�create�along�line�init�x�init�y�init�x���rsize�init�y��
masternew�times�set�speed�value��
ap�JotsaForceRedisplay���
JotsaWait�masternew��
masternew�reset�to�final���







Figure 8: A thread to implement a split.

9



positions of the two collections are determined. The final position of the merged object is
half way between the two. When each master is scaled to have half its original width, the
two collections will be adjacent if their centers arersize��apart. A path for each master is
set so it will end up adjacent to the other, half bay between their original positions. They are
each set to scale as they move. The time to move the first master is set tospeed�valueand
the second master is set to move along with it withpath�set�index�linked. The screen
is redisplayed andJotsaWait is used to activate the first master and wait for it to complete
its motion. Since the second master is index linked to the first, it starts moving when the
first one does. When the motion is complete, each master is set to have its position be its
final position and the second master is unlinked from the first.
Step 2. Merge the two collections into a new one with unit scaling. A new master and
collection are created. Each of the old collections is merged into the new one withmerge

and the old collections and masters are removed.

10



package split��

import java�awt���
import java�awt�image���
import java�util�Vector�
import jotsa���

public class Merge extends JotsaWaitingThread �

JotsaAnimationCollection col��
JotsaAnimationCollection col��
SplitMergeObjects objs�
JotsaAnimationApplet ap�
int speed�value�

public Merge�JotsaAnimationApplet ap� SplitMergeObjects objs�
JotsaAnimationCollection col��
JotsaAnimationCollection col��
int speed�value� �

super�ap��
this�ap 	 ap�
this�objs 	 objs�
this�col� 	 col��
this�col� 	 col��
this�speed�value 	 speed�value�
start���




public void run�� �
int init��x�
int init��y�
int init��x�
int init��y�
int final�x�
int final�y�
int rsize�
JotsaAnimationObject master��
JotsaAnimationObject master��
JotsaAnimationObject newmaster�
JotsaAnimationCollection newcol�

if �col� 		 null� return�
if �col� 		 null� return�
rsize 	 objs�get�rect�size���
master� 	 col��get�master���
master� 	 col��get�master���
master��reset�to�final���
master��reset�to�final���

�� Step �
 Shrink each collection horizontally while moving them together� ��
init��x 	 master��get�firstx���
init��y 	 master��get�firsty���
init��x 	 master��get�firstx���
init��y 	 master��get�firsty���
final�x 	 �init��x � init��x����
final�y 	 �init��y � init��y����
master��path�create�along�line�init��x�init��y�

final�x�rsize���final�y��
master��path�create�along�line�init��x�init��y�

final�x�rsize���final�y��
master��set�scale�linear����� ���� ���� �����
master��set�scale�linear����� ���� ���� �����
master��times�set�speed�value��
master��path�set�index�linked�master���
ap�JotsaForceRedisplay���
JotsaWait�master���
master��reset�to�final���
master��reset�to�final���
master��path�clear�index�linked���

�� Step �
 Merge the two collections into a new one with unit scaling� ��
newmaster 	

objs�create�master�object�final�x�final�y�Color�blue��
newcol 	 new JotsaAnimationCollection�newmaster��
col��merge�newcol��
objs�remove�collection�col���
ap�JotsaRemoveObject�master���
objs�add�collection�newcol��
col��merge�newcol��
objs�remove�collection�col���
ap�JotsaRemoveObject�master���
ap�JotsaForceRedisplay���







Figure 9: A thread to implement a merge.

11



6 Managing the Collections

TheSplitMergeObjects class is used to manage the collections and objects that comprise
them. It keeps a list of all of the collections and provides methods for creating new masters,
collections, and objects.

The constructor just takes the applet as a parameter. It sets up an empty list of collections
and initializes a JOTSAColorListobject to the default. This allows for 125 distinct colors.
TheColorList is used to obtain unique colors when a new piece is added to a collection.
It is described in detail in Section 7.

Theadd�collection andremove�collection methods add and remove collections
from the internal list. Theget�rect�size method returns the size of a collection. The is
the number of pixels in its width or height.

The methodget�closest�collection returns the collection from the list that is clos-
est to the given point andget�closest�collection�position returns aPoint which is
at the center of the closest collection.

When a split is done, each collection needs to have a rectangle of a unique color added
to it. The methodcreate�split�object creates and returns aJotsaAnimationObject
which is a square of the correct size.create�master�object creates and returns an oval
which has its display inhibited.create�solid�object creates and returns a filled oval
which is used for theSelect andDrag operations.

The methodhide�master causes the master to not be displayed. It will be displayed
when its collection is selected. This is done withshow�maser. To make sure the master is
displayed on top of the objects in its collections, rather than hidden behind them, its level is
set to be greater than anything yet created. The level of an object cannot be changed while
it is in JOTSA’s list of displayed objects, so first it is removed from that list, the level is
changed, and then it is reinserted.

The code forSplitMergeObjects is shown below.
package split��

import java�awt���
import java�awt�image���
import java�util�Vector�
import jotsa���
import jotsa�utility�ColorList�

public class SplitMergeObjects �
Vector clist�
private int rectsize 	 ����
private int master�disp�size 	 ���
private ColorList Colors�
JotsaAnimationApplet ap�

public SplitMergeObjects�JotsaAnimationApplet ap� �
this�ap 	 ap�
Colors 	 new ColorList���
Colors�CurrentColorSet�Color�red��
clist 	 new Vector���




public void add�collection�JotsaAnimationCollection col� �
clist�addElement�col��




public void remove�collection�JotsaAnimationCollection col� �
clist�removeElement�col��




public int get�rect�size�� �
return rectsize�




12



public JotsaAnimationCollection get�closest�collection�Point p� �
int shortest�
int thisdist�
int size�
Point pos�
JotsaAnimationCollection closest�
JotsaAnimationCollection col�
size 	 clist�size���
if �size 		 �� return null�
closest 	 get�from�clist����
if �size 		 �� return closest�
pos 	 get�collection�position�closest��
shortest 	 dsquare�p�pos��
for �int i	��i�size�i��� �

col 	 get�from�clist�i��
pos 	 get�collection�position�col��
thisdist 	 dsquare�p�pos��
if �thisdist � shortest� �

closest 	 col�
shortest 	 thisdist�





return closest�




public Point get�closest�collection�position�Point p� �
JotsaAnimationCollection col�
col 	 get�closest�collection�p��
if �col 		 null� return null�
return get�collection�position�col��




public static Point get�collection�position�JotsaAnimationCollection col� �
JotsaAnimationObject master�
master 	 col�get�master���
return new Point�master�get�firstx���master�get�firsty����




public JotsaAnimationObject create�split�object�� �
JotsaAnimationObject ani�
int current�level�
current�level 	 ap�JotsaNextLevel���
ani 	 new JotsaAnimationObject�����current�level�current�level�ap��
ani�set�fill�centered�rect�rectsize�rectsize�Colors�NextColor����
ap�JotsaInsertObject�ani��
return ani�




public JotsaAnimationObject create�master�object�int x� int y�
Color C� �

JotsaAnimationObject ani�
int current�level�
current�level 	 ap�JotsaNextLevel���
ani 	 new JotsaAnimationObject�x�y�current�level�current�level�ap��
ani�set�draw�centered�oval�master�disp�size�master�disp�size�C��
ani�set�inhibit�display���
ap�JotsaInsertObject�ani��
return ani�




public JotsaAnimationObject create�solid�object�int x� int y�
int level� Color C� �

JotsaAnimationObject ani�
ani 	 new JotsaAnimationObject�x�y�level�level�ap��
ani�set�fill�centered�oval�master�disp�size�master�disp�size�C��
ani�set�inhibit�display���
ap�JotsaInsertObject�ani��
return ani�




public void show�master�JotsaAnimationCollection col� �
JotsaAnimationObject master�
master 	 col�get�master���
ap�JotsaRemoveObject�master��
master�set�level�ap�JotsaNextLevel����
ap�JotsaInsertObject�master��
master�clear�inhibit�display���




public void hide�master�JotsaAnimationCollection col� �
JotsaAnimationObject master�
master 	 col�get�master���
if �master 		 null� return�
master�set�inhibit�display���




public void show�clist�� �
int size�
size 	 clist�size���
System�out�println��Collection size
 ��size��
for �int i	��i�size�i���

System�out�println�� ��i��
 ��get�from�clist�i���

13






private JotsaAnimationCollection get�from�clist�int i� �
return �JotsaAnimationCollection�clist�elementAt�i��




private int dsquare �Point p�� Point p�� �
return �p��x�p��x���p��x�p��x� � �p��y�p��y���p��y�p��y��







14



7 The JOTSA ColorList

TheColorList is in thejotsa�utilitypackage. It provide a method for obtaining unique
colors from a simply-defined set. You specify a set of color values in the range 0 to 155, and
theColorListwill generate all colors that use the set of values. By default, the following
five values are used if the constructor is called with no parameters: 0, 102, 153, 204, 255.
Alternatively, the constructor can be given an array of color values to use.

The colors are treated as if they are in a three-dimensional array in row-major form with
red in the first dimension, green in the second, and blue in the third. Since adjacent colors
may look similar, when colors are created, a stride is used. If the stride does not have any.
If the stride is odd, all colors are generated. The default stride is 3, but it may be changed
with ColorIncrementSet. The value can be obtained withColorIncrementGet.

At any time there is a current color which can be returned withCurrentColor and set
with CurrentColorSet. The current color can be changed to the next color and this color
returned withNextColor.

A random color from the list can be generated and returned withRamdomColorGet.
RandomColorSet is similar but also sets the current color to the random color which is re-
turned.

The array of color values being used can be returned withColorListGetand the default
list can be gotten withDefaltColorListGet.
package jotsa�utility�

import java�awt���
import java�awt�image���
import java�util���

public class ColorList �

private static int�� default�colorlist	��� ���� ���� ���� ���
�
private int�� colorlist�
private int colorlistsize�
private int next�color�increment�
private Color current�color�

public ColorList�int�� clist� �
int firstind�
colorlistsize 	 clist�length�
colorlist 	 new int�colorlistsize��
for �int i	��i�colorlistsize�i���

colorlist�i� 	 clist�i��
next�color�increment 	 ��
firstind 	 clist����
current�color 	 new Color�firstind�firstind�firstind��




public ColorList�� �
int firstind�
colorlistsize 	 default�colorlist�length�
colorlist 	 new int�colorlistsize��
for �int i	��i�colorlistsize�i���

colorlist�i� 	 default�colorlist�i��
next�color�increment 	 ��
firstind 	 default�colorlist����
current�color 	 new Color�firstind�firstind�firstind��




public int ColorIncrementGet�� �
return next�color�increment�




public void ColorIncrementSet�int inc� �
next�color�increment 	 inc�




public int�� ColorListGet�� �
int�� new�colorlist�
new�colorlist 	 new int�colorlistsize��
for �int i	��i�colorlistsize�i���

new�colorlist�i� 	 colorlist�i��
return new�colorlist�

15






�� Private methods ��
public Color CurrentColor�� �

return current�color�



public Color CurrentColorGet�� �
return current�color�




public void CurrentColorSet�Color C� �
current�color 	 C�




public static int�� DefaultColorListGet�� �
int�� new�colorlist�
new�colorlist 	 new int�default�colorlist�length��
for �int i	��i�default�colorlist�length�i���

new�colorlist�i� 	 default�colorlist�i��
return new�colorlist�




public Color NextColor�� �
for �int i	��i�next�color�increment�i���

current�color 	 GetNextColor�current�color��
return current�color�




public Color RandomColorGet�� �
int cred�cgreen�cblue�

randomize���
cred 	 colorlist��int��colorlistsize�Math�random�����
randomize���
cgreen 	 colorlist��int��colorlistsize�Math�random�����
randomize���
cblue 	 colorlist��int��colorlistsize�Math�random�����
return new Color�cred�cgreen�cblue��




public Color RandomColorSet�� �
int cred�cgreen�cblue�

randomize���
cred 	 colorlist��int��colorlistsize�Math�random�����
randomize���
cgreen 	 colorlist��int��colorlistsize�Math�random�����
randomize���
cblue 	 colorlist��int��colorlistsize�Math�random�����
current�color 	 new Color�cred�cgreen�cblue��
return current�color�




�� Private methods ��

private void randomize�� �
for �int i	��i����i���

Math�random���



private int find�color�index�int val� �
for �int i	��i�colorlistsize�i���

if �colorlist�i�		val� return i�
return ���




private Color GetNextColor�Color C� �
int red�index�
int green�index�
int blue�index�
red�index 	 find�color�index�C�getRed����
green�index 	 find�color�index�C�getGreen����
blue�index 	 find�color�index�C�getBlue����
if � red�index � �� return new Color��������
if � green�index � �� return new Color��������
if � blue�index � �� return new Color��������
red�index���
if �red�index �	 colorlist�length� �

red�index 	 ��
green�index���



if �green�index �	 colorlist�length� �

green�index 	 ��
blue�index���



if �blue�index �	 colorlist�length� �

blue�index 	 ��


return new Color�colorlist�red�index��colorlist�green�index��

colorlist�blue�index���



16






17



8 The Main Appet

Most of the code in the main applet handles the layout, the buttons and the dragging collec-
tions. All of the actual work in splitting and merging takes place in the two threads —mytt
Split andMerge.
��

�Applet code 	 �split��SplitMerge�
width 	 ��� height 	 ����

��applet�
��

package split��

import java�awt���
import java�awt�image���
import java�applet���
import java�util���
import jotsa���

public class SplitMerge extends JotsaAnimationApplet �

Image timage�
int mouse�x�
int mouse�y�
int width�
int height�
SplitMergeObjects Collections�
JotsaAnimationObject obj�
JotsaSlider speed�control�
JotsaSliderf time�control�
String backstr��
boolean special�flag 	 false�
JotsaAnimationCollection group�
JotsaAnimationCollection group��
JotsaAnimationCollection group��
JotsaAnimationCollection select��
JotsaAnimationCollection select��
JotsaAnimationCollection drag�group�
boolean select�group���flag�
boolean select�group���flag�
boolean drag�group�flag�
int drag�offset�x�
int drag�offset�y�
int run�type�
final int SELECTOR�LEVEL 	 �������
JotsaAnimationObject timestring�
JotsaAnimationObject selector���
JotsaAnimationObject selector���
JotsaAnimationObject selector�d�

public void init�� �
super�init���
width 	 bounds���width�
height 	 bounds���height�����
setup�layout���
JotsaInitImages���
backstr�	

�Illustration � of Splits and Merges using JOTSA version ��
JotsaVersionMajor�����JotsaVersionMinor�

JotsaWriteBackgroundString�backstr��������new Color�����������
timestring 	 new JotsaAnimationObject�width��������

current�level�current�level�this��
Collections 	 new SplitMergeObjects�this��
selector�� 	

Collections�create�solid�object�����SELECTOR�LEVEL�Color�green��
selector�� 	

Collections�create�solid�object�����SELECTOR�LEVEL�Color�blue��
selector�d 	

Collections�create�solid�object�����SELECTOR�LEVEL�Color�red��
timestring�set�draw�string����Color�black��
JotsaInsertObject�timestring��
select�group���flag 	 false�
select�group���flag 	 false�
drag�group�flag 	 false�
drag�group 	 null�
run�type 	 ���
JotsaForceRedisplay���




void setup�layout�� �
setLayout�new BorderLayout����
Panel p 	 new Panel���
Panel r 	 new Panel���
Panel u 	 new Panel���
p�setLayout�new GridLayout�������
r�setLayout�new GridLayout�������

18



u�setLayout�new GridLayout�������
speed�control 	 new JotsaSlider���������������������Move Time ��this��
time�control 	 new JotsaSliderf�����������������������Time Rate ��this��
r�add�new Button��Select G�����
r�add�new Button��Select G�����
r�add�new Button��Show Collection����
r�add�new Button��Show Disp����
u�add�new Button��Make Group����
u�add�new Button��Split G�����
u�add�new Button��Merge G� G�����
u�add�new Button��Drag Group����
p�add�r��
p�add�u��
p�add�speed�control��
p�add�time�control��
add��South��p��
add��Center��JotsaDefaultCanvas��
validate���




String coordstr�int x� int y� �
return ����x�����y�����




void show�disp�� �
System�out�println��Number of displayed objects is ��JotsaNumObjects����




void clear�select���� �
if �select� 		 null� return�
select��get�master���set�inhibit�display���
select� 	 null�




void clear�select���� �
if �select� 		 null� return�
select��get�master���set�inhibit�display���
select� 	 null�




void set�select���Point p� �
JotsaAnimationCollection col�
col 	 Collections�get�closest�collection�p��
if �col �	 null� set�select���col��
selector���set�inhibit�display���




void set�select���Point p� �
JotsaAnimationCollection col�
col 	 Collections�get�closest�collection�p��
if �col �	 null� set�select���col��
selector���set�inhibit�display���




void set�select���JotsaAnimationCollection col� �
if �select� �	 null�

Collections�hide�master�select���
select� 	 col�
col�get�master���reset�color�Color�green��
Collections�show�master�col��




void set�select���JotsaAnimationCollection col� �
if �select� �	 null�

Collections�hide�master�select���
select� 	 col�
col�get�master���reset�color�Color�blue��
Collections�show�master�col��




Point get�collection�position�JotsaAnimationCollection col� �
JotsaAnimationObject master�
master 	 col�get�master���
return new Point�master�get�firstx���master�get�firsty����




void move�group�to�position�JotsaAnimationCollection col� int x� int y� �
JotsaAnimationObject master�
master 	 col�get�master���
master�set�position�x�y��




public void JotsaChangeParameters�� �
JotsaSetRate�time�control�value�����������
JotsaForceRedisplay���




public void JotsaPaintLocal�long tm� �
timestring�reset�string����tm���������




public boolean JotsaHandleCanvasEvent�Event e� �

19



int move�time�
JotsaAnimationObject master�
Point tp�
int new�x� new�y�

if �e�id 		 Event�MOUSE�DOWN� �
showStatus��Down at ��coordstr�e�x�e�y���
if �select�group���flag�

set�select���new Point�e�x�e�y���
else if �select�group���flag�

set�select���new Point�e�x�e�y���
else if �drag�group�flag� �

drag�group 	 Collections�get�closest�collection�new Point�e�x�e�y���
master 	 drag�group�get�master���
drag�offset�x 	 e�x � master�get�firstx���
drag�offset�y 	 e�y � master�get�firsty���




select�group���flag 	 false�
select�group���flag 	 false�
drag�group�flag 	 false�



else if �e�id 		 Event�MOUSE�UP� �

showStatus�����
mouse�x 	 e�x�
mouse�y 	 e�y�
selector���set�inhibit�display���
selector���set�inhibit�display���
selector�d�set�inhibit�display���
if �drag�group 		 null� return true�
move�group�to�position�drag�group�e�x�drag�offset�x�e�y�drag�offset�y�� JotsaForceRedisplay���
drag�group 	 null�



else if �e�id 		 Event�MOUSE�MOVE� �

mouse�x 	 e�x�
mouse�y 	 e�y�
tp 	 new Point�mouse�x�mouse�y��
tp 	 Collections�get�closest�collection�position�tp��
if �tp 		 null� �

tp 	 new Point�mouse�x�mouse�y��


if �select�group���flag� �

selector���set�position�tp�x�tp�y��
JotsaForceRedisplay���



if �select�group���flag� �

selector���set�position�tp�x�tp�y��
JotsaForceRedisplay���



if �drag�group�flag� �

selector�d�set�position�tp�x�tp�y��
JotsaForceRedisplay���





else if �e�id 		 Event�MOUSE�DRAG� �

if �drag�group 		 null� return true�
new�x 	 e�x�drag�offset�x�
new�y 	 e�y�drag�offset�y�
move�group�to�position�drag�group�new�x�new�y��
selector�d�set�position�new�x�new�y��
JotsaForceRedisplay���



return super�handleEvent�e��




public boolean action�Event e� Object arg� �
JotsaAnimationObject tempanim�
JotsaAnimationObject master�
JotsaAnimationCollection group�
JotsaAnimationCollection col�
JotsaAnimationCollection col��
JotsaAnimationCollection col��
Color old�color�
int dim���
double sval�
int init�x�
int init�y�
if ��Select G���equals�arg�� �

System�out�println��Select G����
showStatus��Select G����
select�group���flag 	 true�
select�group���flag 	 false�
drag�group�flag 	 false�
if �select� �	 null�

Collections�hide�master�select���
selector���set�inhibit�display���
selector�d�set�inhibit�display���
selector���set�position�mouse�x�mouse�y��
selector���clear�inhibit�display���
return true�



if ��Select G���equals�arg�� �

System�out�println��Select G����

20



showStatus��Select G����
select�group���flag 	 true�
select�group���flag 	 false�
drag�group�flag 	 false�
if �select� �	 null�

Collections�hide�master�select���
selector���set�inhibit�display���
selector�d�set�inhibit�display���
selector���set�position�mouse�x�mouse�y��
selector���clear�inhibit�display���
return true�



if ��Drag Group��equals�arg�� �

System�out�println��Drag Group���
showStatus��Drag Group���
drag�group�flag 	 true�
select�group���flag 	 false�
select�group���flag 	 false�
selector���set�inhibit�display���
selector���set�inhibit�display���
selector�d�set�position�mouse�x�mouse�y��
selector�d�clear�inhibit�display���
return true�



if ��Make Group��equals�arg�� �

System�out�println��Make Group���
master 	 Collections�create�master�object���������Color�green��
group 	 new JotsaAnimationCollection�master��
tempanim 	 Collections�create�split�object���
group�insert�tempanim������
Collections�add�collection�group��
return true�



if ��Split G���equals�arg�� �

System�out�println��Split G����
if �select� 		 null� return true�
Collections�hide�master�select���
col 	 select��
select� 	 null�
new Split�this�Collections�col�speed�control�value����
return true�



if ��Merge G� G���equals�arg�� �

System�out�println��Merge G� G����
if �select� 		 null� return true�
if �select� 		 null� return true�
Collections�hide�master�select���
Collections�hide�master�select���
col� 	 select��
col� 	 select��
select� 	 null�
select� 	 null�
new Merge�this�Collections�col��col��speed�control�value����
return true�



if ��Show Collection��equals�arg�� �

System�out�println��Show Collection���
Collections�show�clist���



if ��Show Disp��equals�arg�� �

System�out�println��Show Disp���
show�disp���



return super�action�e�arg��






References

[1] Steven Robbins, “A JOTSA Example,” UTSA Computer Science Technical Report,
1997

21


