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Abstract. This paper describes a successful project using computer animation to teach the concepts

of microprogramming to lower division computer science majors. The students write a simulator for

the Mic-1 horizontal microcontroller described in the book Structured Computer Organization by An-

drew Tanenbaum. The simulation is enhanced by the use of a graphical representation of the machine

to animate the simulation. This creative use of computer animation enables the students to see the re-

sults of their simulation without having to write an extensive user interface. They can concentrate on

implementing the instruction cycle, an activity that directly enhances their understanding of micropro-

gramming and the conventional machine level. The XTango animation package is used, making the

animation facility portable to any Unix system with an X display. The user interface and additional

instructional material are available via the web.



1 Introduction

The University of Texas at San Antonio computer science degree program includes a required course

at the sophomore level called Computer Organization II that uses the text Structured Computer Or-

ganization by Tanenbaum [1]. The students in this course have previously taken an introductory pro-

gramming course in C, a data structures course, also in C, and a circuit design course. Computer Or-

ganization II covers CPU organization, the instruction cycle, memory, microprogramming, instruction

formats and types, addressing, assembly language and RISC machines. We use the Intel 80x86, the

Motorola 680x0 and the SPARC microprocessors as case studies. The course includes a segment on

assembly language programming using SPARC assembly language [2].

The most difficult material in the course is the microprogramming covered in the Tanenbaum book

in chapter 4. Students who understand microprogram control develop a fundamental understanding of

how a CPU executes a program. This understanding is important for later courses in operating systems

and architecture. Unfortunately few students are able to master the material from lecture presentations

alone. They are confused by the presence of two instruction cycles (microprogram and conventional

machine level) and have difficulty understanding the timing of the microprogram instructions them-

selves. Students clearly need hands-on experience with this material. Exercises in the Tanenbaum

book include translation of assembly language into microcode and addition of new assembly language

instructions to the machine. Assignments of this type do not give students a sense of the execution tim-

ing.

The traditional approach to overcoming these pedagogical difficulties is for the instructor to pro-

vide hardware or a simulator for student experimentation [3, 4, 5, 6, 7]. The student then views the

state of the machine during execution. Fuchs et al. [5] describe a microprogramming simulator that

they have successfully used to enhance learning in an introductory computer engineering course. They

introduce an instructional microprocessor simulation with a graphical user interface. The students can

write assembly language or microcode for this target machine, and the tool simulates its execution.
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Their approach is a definite improvement over pencil and paper simulation and is particularly useful

if the goal is to teach students to write efficient assembly language or microcode.

The goal of a sophomore level computer science course in computer organization is for the students

to develop a fundamental understanding of how computers work. In particular, the goal is to achieve

an understanding of the instruction cycles of a microcoded von Neumann machine. At this level, a

simulator like the one in [5] does some of the thinking for the students. We have used an alternative

approach in which the students write their own simulation. Because the instruction cycle is the key

concept in this material, we provide an animation environment based on a standard freely-available

animation package that allows students to do a full-instruction cycle implementation in a few hundred

lines of code. The simulator is organized so that it can be implemented in stages with well-defined

milestones. The animated output allows students to see the execution of the machine as they develop

code. The project is so clearly defined that most students are able to complete the simulation. Stu-

dent comments were extremely positive about the experience. The unique advantages of the approach

described here are:

� The students write the part of the simulator that requires fundamental understanding of the pro-

cess they are trying to understand.

� The students do not have to worry about the details of displaying the information on the screen.

� The machine to be simulated is described in a standard textbook.

� The simulator is animated and shows the movement of data in the machine.

� Since the students write their own simulator, they can use their creativity to produce something

that is uniquely their own and in which they can take pride.

� The animations produced by the students look professional, and the students enjoy working on

them.
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� The hard part of the simulation is provided by the instructor and is readily available for use by

others via the web. Other instructors who use the Tanenbaum book can easily incorporate this

project into their courses.

The organization of the paper is as follows. In Section 2 an overview of the simulator is given.

The animation interface is described in Section 3, and class assignments are described in Section 4. A

discussion of the results is presented in Section 5. Some examples of Mic-1 and Mac-1 execution are

provided in the appendix for readers who are unfamiliar with Tanenbaum’s text.

2 Overview of the Simulator

A CPU may have its control function implemented entirely in hardware. Alternatively, the machine

instructions may be interpreted by a simpler machine that directly controls the timing and flow of data

within the CPU. The program that runs on this simpler machine is called a microprogram or the control

store of the CPU. Insertion of a different control store results in a machine with different machine

(assembly language) instructions. The execution of the microprogram consists of loading instructions

from the control store into the microinstruction register (MIR). This register directly controls the flow

of information in the machine.

Tanenbaum describes a simple horizontal microcode machine called the Mic-1 shown in Figure 1.

The machine executes a microprogram that is stored in the control store. The subprograms in the con-

trol store correspond to individual instructions at the conventional machine level (the assembly lan-

guage of the machine). Tanenbaum implements a complete assembly language called Mac-1 in the

Mic-1 control store. More detailed descriptions of the Mic-1 and Mac-1 with examples are given in

the appendix.

The material on microprogramming is quite complicated and requires an in-depth understanding

of the conventional instruction cycle of a von Neumann machine. Students find the material difficult,

in part because there are two instruction cycles to keep track of, one at the microcode level and one
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Figure 1: The Mic-1 machine as it appears in the Tanenbaum text. (Reproduced with permission from
Structured Computer Organization 3/E by Andrew S. Tanenbaum, Prentice Hall, 1990.)

at the assembly language level. We have taught this material for several years, never feeling satisfied

with the students’ grasp of the material. Although they seemed to understand the lecture presentations

and could do the assigned problems, fundamental understanding was often lacking. We considered

implementing a Mic-1 simulator for the students to use, but there just was not enough real estate on

the screen of an ASCII terminal to make this feasible.

5



Several years went by in which we were involved in other teaching projects, and so we did not teach

this course for a while. In fall 1994 one of us (Steve Robbins) was assigned to teach the course again.

In the meantime the course had moved from ASCII terminals connected to a VAX to Sun workstations.

The availability of megapixel displays solved the real estate problem. Two options were available —

write a simulator for student experimentation or have the students write the simulator as a class as-

signment. The problem with the latter approach is that most of the code for such a simulator involves

boring routines to display the state of the simulated machine. While GUI development might be a good

vehicle for teaching programming techniques, it is not directly related to the course. Also, it would be

nice for students to take advantage of the graphics capabilities of the workstations, but the program-

ming required normally far exceeds the capabilities of the students at this level. These difficulties were

overcome by using the XTango [8] computer animation system as the display vehicle for the simula-

tions.

The idea of a Mic-1 simulator is quite simple since the machine itself is simple. The basic simulator

is a program that takes two command line arguments, a control store and a memory file. The first file

is a representation of the 79-word control store used in the Mic-1 machine. The second file represents

the memory of the Mac-1 machine and contains the assembled Mac-1 assembly language program to

execute along with its data. The simulator initializes certain data structures and then goes into a loop:

while��� �
subcycle�����
subcycle�����
subcycle�����
subcycle�����

	

Each of the subcycle routines performs the operations corresponding to that subcycle. For example,

subcycle ��� might just consist of:

MIR 
 decode�MIR�control�store�MPC���

where control store is an array of 32-bit quantities and MIR is a structure of the type:
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typedef struct �
int addr�
int Areg�
int Breg�
int Creg�
int ENC�
int WR�
int RD�
int MAR�
int MBR�
int SH�
int ALU�
int COND�
int AMUX�

	 MIR�decoded�

The decode MIR routine just shifts and masks its argument to produce the required fields.

Of course to make this simulator useful, there must be some interaction with the user. The user

should be able to single step through the execution of the Mic-1 at the three levels: the Mic-1 subcycle,

the Mic-1 cycle and the Mac-1 instruction cycle. Most of the code for the simulator involves displaying

what is going on in a useful way.

3 Animation Interface

The XTango animation package is a powerful tool for showing the dynamic behavior of a program.

A simplified interface to XTango is provided by the animator which was written by John Stasko of

Georgia Tech [8] specifically for use by undergraduates doing computer animation. This program sim-

ply reads ASCII text, one command per line. Since the animator’s input comes from standard input,

a C program can send commands to it with simple printf statements. The simulator might be run by

the following command:

mic� control
store assembly
prog � animator

The simulator executable is called mic�. The control store is contained in the file control
store.

The contents of the main memory are held in the file assembly
prog. The standard output of the

simulator is redirected to standard input of the animator through the pipeline �.
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The animator allows for drawing text, lines, rectangles, triangles and circles in various colors.

For example, the following animator command creates a rectangle on the screen:

rectangle ���� �
� �
� �
� �
� blue outline

Positions and distances in the default animatordisplay are referenced with rectangular coordinates in

the range from 0.0 to 1.0. The above command creates a rectangle whose lower left corner has coordi-

nates (0.3, 0.2) and whose width and height are 0.4 and 0.5 respectively. The outline of the rectangle

is displayed in blue. The rectangle can be referenced by its ID, 1234. The animator provides com-

mands to move objects smoothly from one location to another making animation relatively painless.

The animator command:

moveto ���� �
� �
�

moves the rectangle with ID 1234 so that its lower left corner now has with coordinates (0.4, 0.7).

The animator interface has been successfully used in our upper division Analysis of Algorithms

course, but it is too complicated for the lower division Computer Organization students given the com-

plexity of the display to be produced. We solved this problem by writing an initialize animator

routine to draw and label all of the boxes and lines in the diagram. The sample animator display

from the first version of the Mic-1 simulator shown in Figure 2 corresponds to the drawing from the

Tanenbaum book shown in Figure 1. Color is automatically used on a color display. Approximately

40 additional routines are provided to fill values in the various boxes and to move values from one

place to another. These library routines hide the details of the animation from the students. Sample

library routines are shown in Table 1. Their functions should be evident from their names with a small

amount of explanation. For example, the routine:

ani�move�value�from�reg�to�alatch�value�reg��

takes the given value, highlights it in the given register, smoothly moves it to and then along the A bus

to the A latch, and changes the value displayed in the A latch.
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Figure 2: The animator display for the first version of the simulator.

The students are shown a very simple Mic-1 simulator for demonstration purposes so that they

can see what is expected of them. The sample simulation allows for single stepping through the Mic-

1 subcycles, dynamically showing the execution of the Mic-1 machine. For example, on the second

Mic-1 subcycle, data in one of the registers is highlighted, moved from the register to the A bus and

down the A bus into the A latch. Data in another register is highlighted and moved to the B bus and

down into the B latch. The entire program (excluding the animator library) can be implemented in

about 300 lines of code.

Figure 2 shows the animator output. The snapshot of the display was taken in the middle of ex-

ecuting the second subcycle of the first Mic-1 instruction for the microprogram routine that executes
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void ani�set�mir�A�value�int val��

void ani�set�mir�amux�value�char ch��

void ani�set�register�value�int value� int reg��

void ani�move�value�from�reg�to�alatch�int value� int reg��

void ani�move�value�from�blatch�to�mar�int value��

void ani�move�value�from�mbr�to�memory�int value� int address��

Table 1: Some of the routines used to modify the animator display.

the Mac-1 POP instruction. The details of this execution are described in the appendix. The simulator

displays the decoded MIR by calling a routine from the animation library package for each field of the

MIR. For example:

ani�set�mir�A�value����

displays �� in the A field of the MIR, since the animator library knows that register 6 of the Mic-1

contains the constant ��. The instruction POP is shown in the decoded IR box of the display with the

command:

ani�set�decoded�ir�registers�IR���

The animator library knows about the Mac-1 assembly language and can disassemble its instructions.

The display in the decoded MIR box can be set with:

ani�set�decoded�mir�control�store�MPC���

In subcycle 2, the routines:

ani�move�value�from�reg�to�alatch�registers�MIR
Areg��MIR
Areg��
ani�move�value�from�reg�to�blatch�registers�MIR
Breg��MIR
Breg��

are used. The first of these highlights the value in register 6, which is ����, and shows it moving to the

A bus, down the A bus, and into the A latch. The A latch is then filled with that value. The snapshot

of Figure 2 was captured just as this value was to enter the A latch.
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4 Class Assignments

For the first assignment, the class is divided into small groups and each group is responsible for hand-

assembling ten instructions in the control store. By requiring that all don’t-care bits be zero, there is

only one correct answer for each word of microcode. The students hand in their results by email and

these answers are collected into a single file to form the control store input for the simulator.

The simulator assignment consists of writing a basic simulator that allows for single stepping at

each of three levels: Mic-1 subcycle, Mic-1 cycle and Mac-1 instruction cycle. The simulator program

essentially consists of a loop which, aside from handling standard input, calls the four procedures to

handle the Mic-1 subcycles. For example, subcycle one consists of taking the element from the control

store array indexed by the MPC and decoding it. The decoding involves shifting and masking so that

each bit field of the MIR can be stored in the appropriate field of an MIR structure. The simulator

shows each field on the display by calling a routine such as ani set mir A value�value�reg�.

The basic simulator assignment is divided into milestones. The first milestone consists of writing

a main program that just calls the initialize animator routine and is executed with its standard

output redirected to the animator. These few lines of code allow the students to see how easy it is to

bring up the graphical interface. The second milestone consists of setting up and initializing the data

structures used for storing the state of the Mic-1 machine and sending the initial values of the sixteen

registers to the animator. At this point students have written very little code, but they can see how the

animation will progress. They can try out several of the routines for controlling the graphical display

and get a feel for what will be involved in the simulation. The milestones progress in simple steps until

the entire simulator is complete. Students can typically produce a working simulator in less than four

weeks.

The simulator takes simple input commands for single stepping and for turning on and off the dy-

namic updating of the display. Even with fast hardware, it takes several seconds to show a full Mac-1

instruction cycle so for testing more than a few Mac-1 instructions, it is convenient to not show the
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detailed execution at each Mic-1 subcycle. The simulator can execute about a thousand Mac-1 instruc-

tions per second with the display updating turned off when run on a low-end (in 1994) Sun workstation.

The Mac-1 assembly language is cumbersome for manipulating arrays since it does not have in-

direct addressing except through the stack pointer and accumulator. In the next assignment students

add a number of instructions for indexed addressing. The new assembly language is called the Mac-1a.

The students are given a Mic-1 assembler at this point and told to modify the control store to implement

the new instructions. The opcode encoding for the new instructions is left to the students and they are

challenged to find the most efficient encoding and control store program that maintains binary compat-

ibility with the old machine. This assignment leads to a good discussion of the consequences of binary

compatibility over several generations. They also make a few minor modifications to their simulator

to keep track of the number of Mic cycles and Mac instructions executed. Since the animator dis-

plays the decoded instruction register, some routines are included so that the student’s simulators can

communicate the information about the new Mac instructions to the animator.

One of the problems with the original simulator was the display of the Mac-1 memory. It was left

to the students to display this memory with an appropriate command to their simulator. This was done

with text sent to standard error and was independent of the graphical display. Towards the end of the

semester, we modified the animatordisplay so it could show a part of the Mac memory as well as the

cycle and instruction counts. The new animator display is shown in Figure 3.

The students are encouraged to add features to the basic simulator. Some of the features added by

the students or suggested by the instructor include:

� Execute until a Mac-1 fetch and decode are complete.

� Modify the control store so that the simulator stops when a particular Mac-1 opcode is detected.

� The ability to unexecute instructions.

� Allow breakpoints.

� The ability to modify the memory while the simulator is running.

� Loading information about the assembly language encoding from a file.
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Figure 3: The animator display for the second version of the simulator.

� Analyze the program before execution. That is, run the code for a while and determine where
in memory the program is and what memory locations are accessed. This allows for displaying
the memory locations in a format appropriate to their use.

� Add specific additional Mac-1 instructions chosen by the instructor, keeping binary compatibil-
ity with the original Mac-1 machine.

� Add general purpose Mac-1 instructions chosen to make certain functions efficient, such as ac-
cessing arrays.

� Add an interrupt capability.
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� Add (memory mapped) I/O capability.

In addition, the simulator can be modified to simulate other microcoded machines. Some of the

possible changes include:

� Change word length.

� Change the memory access time.

� Add instruction decoding hardware.

5 Discussion

The simulator and associated instructional materials have been used for several semesters at UTSA.

Students have been surveyed to assess their perception of the benefits of doing such a project. These

students indicated that the simulator project enhanced their understanding of microprogramming and

how computers worked in general. They also found the project interesting and enjoyed working on it.

The latter may be the most important benefit in that students learn best when working on something

they enjoy.

The sample Mic-1 simulator provided with the animation package has been used in some semesters

as a debugger for Mac-1 assembly code and as a test bed for student-developed microcode. During

these semesters, students wrote a Mac-1 assembler for their major project rather than a Mic-1 simulator.

Both approaches provide hands-on learning about the machine cycle.

The projects described in this paper and associated support material are available via the world

wide web [9] including:

� A simple Mic-1 assembler for generating the control store for the simulator.

� A simple Mac-1 assembler for generating the memory image for use by the Mic-1 simulator.

� The source code for the XTango animator routines for the Mic-1 simulator.

� Copies of the assignments given to the students in two semesters.

� A simple Mic-1 simulator executable for Sun Sparc Solaris 2.
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� A XTango animator executable for Sun Sparc Solaris 2.

� Information about obtaining the XTango package.

In 1994 when this assignment was developed, there was no portable vehicle for animation. Since

most computer science departments had Unix workstations running X, XTango animation was at least

potentially usable. It does, however, require some expertise to compile and install the XTango system.

Since these projects were developed, the world wide web has created new opportunities for instruc-

tional animation. In 1998, Java is universally available and clearly the choice for animation, espe-

cially in an educational setting. The XTango animator has been ported to Java in the form of Lambada

[10]. This Java package should work on any system supporting a Java virtual machine, including both

Unix workstations and PCs. The simulator described here has a problem when running under a Java

XTango simulator. The simulator display contains hundreds of objects, and painting the background

display which is almost instantaneous with XTango takes several minutes under Lambada, even on a

relatively fast workstation. This limitation can be overcome by redesigning the simulator to load the

background as an image rather than drawing it as many different objects.

Alternatively, the simulator could be rewritten directly in Java. A proof-of-concept prototype was

written and performs well. The direct Java implementation overcomes several of the drawbacks of the

XTango animator version. With the XTango animator, only one object can move at a time. The Mic-1

simulator under XTango first shows data moving along the A-bus and then along the B-bus. The Java

version shows both motions in parallel. Also, buttons to execute a subcycle, cycle, or instruction are

incorporated into the graphical display. The prototype can be run through a browser [9], but the Mac-1

memory cannot be changed.

Appendix: Details of the Mic-1 and Mac-1 Machines

This appendix provides an overview of the Mic-1 and Mac-1 from Section 4.2 in Tanenbaum’s

book [1]. Refer to Figure 1 of the paper during the discussion.

The Mic-1 instruction cycle consists for four subcycles. On the first subcycle the microprogram
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counter (MPC) addresses one of the 256 possible words in the control store, and this value is stored

in the microinstruction register (MIR). On the second subcycle one of the sixteen register values is

stored in the A latch and one in the B latch. The A and B fields of the MIR determine which registers

are chosen. The AMUX bit in the MIR determines whether the left input to the ALU comes from the

memory buffer register (MBR) or the A latch. The ALU bits control the ALU functions (add, and, pass

A, complement A), and the SH bits control the Shifter that can shift one bit to the left or right, or not

shift at all. The result of this combinational logic is assumed to be available by the start of subcycle

4. In the meantime, during subcycle 3 the low 12 bits of the B latch are stored in the memory address

register (MAR) if the MAR bit of the MIR is set.

On subcycle 4, the result from the Shifter is stored in the MBR if the MBR bit of the MIR is set.

The result is also stored in the register specified by the C field of the MIR if the ENC (enable C bus)

bit is set. Additionally on subcycle 4, the COND bits of the MIR along with the negative (N) and zero

(Z) flags of the ALU determine the next address to be loaded into the microprogram counter (MPC).

The options are to increment the MPC or to use the branch address stored in the ADDR field of the

MIR. The possibilities are branch never, branch always, branch on zero, or branch on negative.

A Mic-1 cycle can also initiate either a read or a write operation as determined by the RD and WR

bits of the MIR. Main memory is accessed by writing the address in the MAR. For a read, the RD

control line is activated for two Mic-1 cycles. The value read is then available in the MBR and can

be moved into one of the sixteen Mic-1 registers. For a write, the value to be written is moved to the

MBR, and the WR line is activated for two Mic-1 cycles. The write operation stores the value ov the

MBR in memory at the address specified by the MAR.

Overview of the Mac-1

Tanenbaum gives a control store for the Mic-1 (just 79 words) that implements a simple assembly

language instruction set called the Mac-1. The 23 instructions of the Mac-1 include load, store, add,

and subtract instructions for a simple accumulator machine using direct and stack addressing. Other
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instructions include push, pop, call, return, and jump. Four of the Mic-1 registers represent the program

counter (PC), accumulator (AC), the stack pointer (SP), and the instruction register (IR) of the Mac-

1 machine. Two other registers are used for scratch registers, and five registers hold constants. The

remaining five of the sixteen Mic-1 registers are not used by the control store that implements the Mac-

1.

The basic instruction cycle for a von Neumann machine such as the Mac-1 consists of instruction

fetch, increment program counter, decode instruction, and execute instruction. The Mac-1 instruction

cycle is started with the execution of the microinstruction at address 0 in the control store. The instruc-

tion whose address is contained in the PC is read into the instruction register, the PC is incremented,

and the instruction is decoded. The decoding takes a long time on the Mic-1 because it is done by

examining the bits of the instruction one at a time. The decoding is not described here.

As an example of instruction execution, consider the Mac-1 POP instruction which removes the

memory value at the top of the stack and puts it into the accumulator (AC). POP can be described

functionally as:

ac �
 m�sp�� sp 
 sp���

The Mac-1 POP is implemented by three instructions in the Mic-1 control store:

mar �
 sp� sp �
 sp � �� rd�
rd�
ac �
 mbr� goto ��

The first of these instructions does two operations. It starts the memory read necessary to obtain the

word on the top of the stack, and it increments the stack pointer. Since memory operations take two

Mic-1 cycles, the next instruction just waits for the read to complete by keeping the RD line active. In

the third instruction, the result read from memory is moved from the MBR into the AC. The instruction

then transfers control (goto �) to the part of the microprogram that starts the next Mac-1 instruction

cycle.

17



Let us look in detail at how the first of these instructions is executed in a single cycle of the Mic-

1 machine. Since the Mic-1 is also a von Neumann machine, the instruction cycle of the Mic-1 also

consists of the operations (micro)instruction fetch, increment (micro)program counter, decode (mi-

cro)instruction, and execute. Here is how this is done on the four subcycles of the Mic-1.

On the first subcycle, the instruction pointed to by the MPC is moved from the control store into

the MIR. Since each collection of bits in the control store has an independent control function, the

instruction is already decoded. A control store with this property is called horizontal. The next three

subcycles perform the execution and the incrementing of the MPC. The microinstruction: mar �
 sp�

sp �
 sp � �� rd� is given below:

AM
UX

COND

ALU
SH M

BR
M

AR
RD W

R
ENC

C B A ADDR

0 00 00 00 0 1 1 0 1 0010 0010 0110 xxxxxxxx

On subcycle 2, the register in the A field of the MIR is moved into the A latch and the register in the B

field is moved into the B latch. Register 6=������� has the constant one, and register 2=������� is the

SP. The AMUX field of 0 selects the A latch as the left input of the ALU. The ALU field of 0 specifies

that the ALU should add its two inputs, and the SH field of 0 indicates that the Shifter should not shift.

After some delay determined by the speed of this combinational logic, the output of the Shifter will be

SP+1.

On subcycle 3, since the MAR field of the MIR is 1, the value in the B latch (the SP register) is

stored in the MAR. Since the RD field is one, a read cycle is started.

On subcycle 4, since the ENC (enable C bus) field of the MIR is one, the Shifter output is stored

in the register specified by the C field of the MIR. This is register 2, which is the SP register. Thus,

the SP register has been incremented. Because the MBR field is 0, the Shifter output is not stored in

the MBR. The COND field of 0 indicates that no jump is to be performed and so the left input of the

Mmux is used to load the new value of the MPC. This increments the MPC. The ADDR field is not

used by this microinstruction since no branch occurred.
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