Adding Sound to the
XTANGO Animator

Steven Robbins
September, 1995

Technical Report CS-95-13

Abstract. This is the third in a series of technical reports
dealing with the use of sound by programs. In this report a
maodification to the XTANGO Animator to allow sound gen-
eration by the Animator is described.

Division of Computer Science

The University of Texas at San Antonio
San Antonio, TX 78249

1 Introduction

The XTANGO animation package [2] is a powerful tool for showing the dynamic behav-
ior of aprogram. A simplified interface to XTANGO is provided by the animator. This
program ssimply reads ASCI| text from standard input and interprets each input line as an
animation command. Simplecommandsallow the creation of objects such asrectangles, tri-
angles, circles, or text while other commands move these objects along a straight line path.

| have devel oped amethod of augmenting thisanimation package to use sound generated
by aMIDI device. At this point the supported features include the generation of atone with
a given timber (instrument), pitch, and volume while a text object is moving. An option
exists for the generation of another sound when the move is completed. Additionally, the
pitch can be modified as the object is moved.

Most of the changes to the package are make to the animator programitself asthisisthe
program that interprets the commands. The animator calls XTANGO functionsto perform
the animation. The only modification to the XTANGO source isin the filextangodraw.c
and the modification involves only 2 lines. A global variable is declared and initialized at
the top of thisfile:

void (*sound_fun)(void) = NULL;

Thisis a pointer to afunction which isinitialized to NULL. A second line is added to the
function TANGO_Text whichisthelast functionin thextangodraw. cfile. Before thistwo-
line function returnsthe following is inserted:

if (sound_fun !'= NULL) sound_fun();

Sincesound funisinitializedto NULL, thishas no effect unless sound_fun has been mod-
ified and so the modified X TANGO package can be used in applications that do not support
sound. Thismeansthat only one XTANGO package needs to be supported on a system, and
the sound features are available without adding significant overhead when sound is not used.

TANGO _Text is called each time atext object is drawn. Moving an object in TANGO is
accomplished by a sequence of operationsin which the object is erased and then redrawn at
adglightly different position along the path of motion. If the sound fun pointerisnot NULL,
the function it pointsto is called each time the text is moved along its path.

Theanimator islinked withthe XTANGO library, and so it can set the sound_fun pointer
as desired. Commands have been added to the animator to initialize the sound device and
to produce sounds as text is moved.

The animator sound interfaceis easy to use. To produce asound of constant pitch during
amove, just send the animator the command:

nextnote nmp O

wheren, m, and p areintegersrepresenting the pitch, volume, and channel (instrument). The
last parameter can be used to change the pitch during the motion of the text. This sound will
be used when the next animator moveto command is executed.

If the command

endnotenm p 0

is also sent before the move, then the corresponding sound is produced when the move is
complete.

2 TheUser Interface

This section gives a complete reference manual for the commands which have been added
to the animator at the time this report was written.

usesound sounddev

Thiscommand initializesthe sound device. Use /dev/ttySofor thefirst serial port (COM 1)
under Linux Slackware2.2 or /dev/term/aforthefirst seria port under Solaris2. Anerror
message is sent to standard error if an error occurs.

initchan channel instrument

This command associates the given channel with the given instrument. Channel numbers
are between 0 and 15, and instrument numbers are between 0 and 127. See[1] for alist of
the instruments that can be used for a general MIDI device such as the Korg X5DR. This
device associates channel 9 with the General MIDI drum kit when it is turned on.

nextnote pitch velocity channel increment

This command causes the animator to play the note with the given pitch and velocity (vol-
ume) on the given channel the next time text is moved. The pitch and volume are each be-
tween 0 and 127. A volume of O representssilence. See[1] for the relationship between the
pitch number and the note that is played. The increment is an integer which may be posi-
tive, negative, or zero. Each timetext is moved a small amount the increment is added to
the pitch, and the note is played. This alows the pitch to vary as the text is moved along a
line.

endnote pitch velocity channel duration

This command sets a note which will start when the next text moveto completes. The du-
ration must be included in this command but isis not currently used. Instead, the note is
turned off by the next endnote command when amoveto completes.

3 Implementation Details

The animator keeps track of three note objects each of typenotetype

typedef struct {
int flag;
int pitch;
int velocity;
int channel;
int duration;
int pitchinc;

} notetype;

These are called nnote, enote, and eoffnote. The nnote contains the next note to play.
The nextnote animator command sets the pitch, velocity, channel, and pitchinc
members of this variable fromits parameters and also setsthe f1ag to true. The nextnote
command also sets the sound_fun pointer to point to the increment note function if the
pitchinc parameter was not zero. When atext move from an animator moveto command
occurs, moveto starts the note if nnote.flag isset. If the nnote.flag is set when the
moveto completes, the note is turned off.

If the pitchinc was not zero, the increment note function is called each time a
small text move takes place. This turns off the previous note stored in nnote, increments
nnote.pitchbynnote.pitchincandthen startsthenew note. Thisallowsfor the change
in pitch as the text is moved.

The endnote commandis used to produce anotewhen themoveto completes. It setsthe
pitch, channel, and duration members of enote from its parameters as well as setting
itSenote.flagto true. Beforethemoveto returns, it startsthisnoteif enote.flagisset.
The eoffnote variableisused to eventually turn off thisending note. The eoffnoteis set
totheold enote valuewhen anew enote is set by the endnote animator command. If this
variable has its flag set when amoveto completes, the noteis stopped. An endnote witha
velocity of O can be used to turn off the previous endnote without initiating a new one.

4 Code Segments

The following represents most of the code that was added to the animator.

notetype nnote = {0,0,0,0,0,0};
notetype enote = {0,0,0,0,0,0};
notetype eoffnote = {0,0,0,0,0,0};

int sfd = -1;

void send_two_bytes(int bl, int b2)

{
unsigned char playmsg[2];
playmsg[0]= (unsigned char) bi;
playmsg[1]= (unsigned char) b2;
write(sfd,playmsg,2);

+

void send_three_bytes(int bl, int b2, int b3)
{
unsigned char playmsg[3];
playmsg[0]= (unsigned char) bi;
playmsg[1]= (unsigned char) b2;
playmsg[2]= (unsigned char) b3;

write(sfd,playmsg,3);
}
void all_notes_off()
{
send_two_bytes (0xbc,0x7a) ;
}

void start_note(int pitch, int velocity, int channel)

{
send_three_bytes(0x90+channel ,pitch,velocity);

void end_note(int pitch, int velocity, int channel)

{
send_three_bytes(0x80+channel ,pitch,velocity);

}
void increment_note(void)
{
if (nnote.pitchinc != 0) {
end_note(nnote.pitch,nnote.velocity,nnote.channel);
nnote.pitch = nnote.pitch+nnote.pitchinc;
start_note(nnote.pitch,nnote.velocity,nnote.channel);
}
}

void
usesound(str)
char *str;

char cmd[SLEN];

char sound_dev[SLEN];
struct termios mytermio;
int retval;

speed_t speed;

sscanf(str, "%s Y%s",cmd,sound_dev);
fprintf(stderr,'"opening sound device %s\n'",sound_dev);
sfd = open(sound_dev,0_RDWR);
if (sfd < 0) {
fprintf(stderr,"Error opening sound device: ¥s\n",sound_dev);
return;
}
retval = tcgetattr(sfd,&mytermio) ;
if (retval < 0) {
fprintf(stderr,"Error getting termio structure for fd=Jd\n",sfd);
return;
}
speed = cfgetospeed(&mytermio) ;
fprintf(stderr,"0ld speed paramter is %d\n", (int)speed);
retval = cfsetospeed(&mytermio,B38400);
if (retval < 0) {
fprintf(stderr,"Error setting baud rate in termio structure\n");
return;
}
retval = tcsetattr(sfd,TCSANOW,&mytermio);
if (retval < 0) {
fprintf(stderr,
"Error setting new termio structure of sound outputi\n");
return;
}
retval = tcgetattr(sfd,&mytermio) ;
if (retval < 0) {
fprintf(stderr,
"Error getting termio structure for fd=Jd second time\n",sfd);
return;

speed = cfgetospeed(&mytermio) ;
fprintf(stderr,
"New speed paramter is %d, B38400=%d\n", (int)speed, (int)B38400);

}
void
initchan(str)
char *str;
{
char cmd[SLEN];
int chan,instr;
sscanf(str, "¥s %d %d",cmd,&chan,&instr);
send_three_bytes(0xcO+chan,0,instr);
}
void
nextnote(str)
char *str;
{
char cmd[SLEN];
int pitch,vel,chan,inc;
sscanf (str, "%s %d %d %d %d",cmd,&pitch,&vel, &chan,&inc);
nnote.pitch = pitch;
nnote.velocity = vel;
nnote.channel = chan;
nnote.pitchinc = inc;
if (vel > 0) nnote.flag = 1;
else nnote.flag = O;
if (inc == 0) sound_fun = NULL;
else sound_fun = &increment_note;
}
void
endnote(str)
char *str;
{

char cmd[SLEN];
int pitch,vel,chan,dur;

sscanf (str, "%s %d %d %d %d",cmd,&pitch,&vel, &chan,&dur);
if (enote.flag) eoffnote = enote;

enote.pitch = pitch;

enote.velocity = vel;

enote.channel = chan;

enote.duration = dur;

enote.pitchinc = 0;

if (vel > 0) enote.flag = 1;

else enote.flag = O;

5 ALibraryfor XTANGO Sound

It is more convenient for programs to call functions than to send output to standard outpui.
We provide a procedural interface to parts of the animator.

The following functions should require little explanation for those who have used the
animator.

void initialize_sound(char *dev)

{
(void)printf("usesound %s\n'",dev);
(void)fflush(stdout) ;

b

void set_sound_channel(int chan, int instr)

{
(void)printf("initchan %d %d\n",chan,instr);
(void)fflush(stdout) ;

b

void set_move_note(int pitch, int volume, int channel, int incr)

{
(void)printf("nextnote %d %d %d %d\n",pitch,volume,channel,incr);
(void)fflush(stdout) ;

void clear_move_note()

{
(void)printf ("nextnote %d %d %d %d\n",0,0,0,0);
(void)fflush(stdout) ;

void set_end_note(int pitch, int volume, int channel)

{
(void)printf("endnote %d %d %d O\n",pitch,volume,channel);
(void)fflush(stdout) ;

void stop_end_note(int pitch, int volume, int channel)

{
(void)printf("endnote %d %d %d O\n",pitch,volume,channel);
(void)fflush(stdout) ;

}

void moveto_id(int id1l, int 1d2)

{
(void)printf("moveto %d %d\n",id1,id2);
(void)fflush(stdout) ;

}

void make_text_flex(int id, double x, double y, char *color,
char *font, char *str)

(void)printf("flextext %d %3.4f %3.4f 1 ¥s %s Ys\n",
id,x,y,color,font,str);
fflush(stdout);

void make_circle(int id, double centerx, double centery,
double radius, char *color, char *fill)

(void)printf("circle %d %3.4f ¥3.4f ¥3.4f ’s Y%s\n",
id,centerx,centery,radius,color,fill);

6 Anexample

The following example uses the Solaris 2 first seria port /dev/term/a and sets channel
1 to be the vibes. It creates a text object containing the word MOVING with ID 1000 and
two circles with IDs 1001 and 1002. It moves the text to the center of the first circle with
increasing notes and then to the center of the second circle with decreasing notes. When
done, it produces a clash of symbols.

#define ID1 1000
#define ID2 1001
#define ID3 1002
#define ID4 1003
/* Initialize the serial port */
initialize_sound("/dev/term/a");

*

/

/* Set channel 1 to instrument 11 (vibes)
set_sound_channel(1,11);

/* Create three objects */
make_text_flex(ID1,0.2,0.2,"black","8x16","MOVING");
make_circle(ID2,0.4,0.8,0.1,"red","outline");
make_circle(ID3,0.6,0.15,0.1,"blue","outline");

/* Set note to 60 = C3, volume = 100, channel 1, increment 3 */
set_move_note(60,100,1,3);
moveto_1d(ID1,ID2);

/* Set note to 81 = 81, volume = 100, channel 1, increment -3 */
set_move_note(81,100,1,-3);

/* Channel 9 is the drum kit and note 8 is a cymbal clash */

set_end_note(8,100,9);
moveto_1id(ID1,ID3);
clear_move_note();
make_text_flex(ID4,0.05,0.05,"purple","5x8","The End");

7 TheTable

The table given on the next page lists the correspondence between numeric values and the
things they can represent. For each number in the range O to 127, 5 values are given. The

firstistheinstrument that is represented by the number when the number is used in achannel
initialization command. Next ismy perception of how the volume of the note behaveswhile
the noteison. Thisis called the envel ope of the note and isin the columnlabeled L. | have
used three classifications. F means that the note dies out fast. S means that the note dies out
slowly. C means that the volumeis constant as long as the note is on so that it does not die
out until it is stopped. The third entry is the Drum Kit sound that the number corresponds
to if it is used as the pitch for a note on channel 9. Only notes 28-87 represent valid Drum
Kit sounds. Next is my perception of the envelope of that Drum Kit sound. Last isthe note
that the number represents when used as the pitch of a start note or stop note command.

| have picked out a few of the instruments and Drum Kit sounds as being an interest-
ing subset to examine when determining what to use for an auralization. These are listed
in boldface. The serious user will want to listen to al of the MIDI instruments and drum
sounds.

References

[1] S. Robbins, “Controlling the Korg X5DR Synthesizer from a UNIX Program,” UTSA
Division of Computer Science Technical Report, CS-95-12.

[2] J.T. Stasko, “Animating algorithmswith XTANGO,” SIGACT News, vol. 23, number
2, pp 67-71, 1992

10

[~um [Tnstrument L][Drum [L [Note [[[num [Instrument L [Drum L | Note |
0 | GO1Piano M C-2 64 | G65 Soprano Sax C Open Conga F E3
GO2 Brite Piano M C# -2 65 | G66 Alto Sax C Hi Timbal F| F3
2 | GO3 Hammer Piano M D-2 66 | G67 Tenor Sax C Lo Timbal F F#3
3 | G04 Honky Tonk M D#-2 67 | G68 Baritone Sax C Agogo F| G3
4 | GO5New Timesh M E-2 68 | G69 Sweet Oboe C Agogo F | G#3
5 | GO06Digi Piano M F-2 69 | G70English Horn C Cabasa F| A3
6 | GO7 Harpssichord M F# -2 70 | G71BassoonOboe | C Maracas F | A#3
7 | G08 Clavichord M G-2 71 | G72Clarinet C Whistle S F B3
8 | G09 Celesta M Gt -2 72 | G73Piccolo C Whistle L M| C4
9 | G10Glocken M A-2 73 | G74Flute C Guiro S F | Cc#a
10 | G11 Music Box M A#-2 74 | G75 Recorder C Guiro L M D4
11 | G12Vibes M B-2 75 | G76 Pan Flute C Claves F D# 4
12 | G13Marimba M C-1 76 | G77Bottle C WoodBlock?2 F E4
13 | G14 Xylophone M C#-1 77 | G78 Shakuhachi C WoodBlock3 F F4
14 | G15Tubular M D-1 78 | G79Whistle C Mute Cuica F F#4
15 | G16 Santur M D#-1 79 | G80 Ocarina C Open Cuica F| G4
16 | G17Full Organ C E-1 80 | GB81 Sguare Wave 9] MuteTriang F| GH4
17 | G18Perc Organ C F-1 81 | G82 Saw Wave C OpenTriang F| A4
18 [G19BX - 30rgan C Fi#-1 82 | GB83 Syn Caliope C Cabasa F | A#4
19 [G20 Church Pipe C G-1 83 | GB84 Syn Chiff C JingleBell M| B4
20 | G21 Positive C G#-1 84 | GB85 Charang M Bell Tree F| C5
21 | G22Musette C A-1 85 | GB86 Air Chorus C Castanet F | C#5
22 | G23Harmonica C A#-1 86 | G87 Rezzo 4ths C Side Kick F| D5
23 | G24Tango C B-1 87 | GB88Bass& Lead C Taiko Lo F | D#5
24 | G25Classic Guitar M C-0 88 | GB89 Fantaasio C ES5
25 | G26 Acoustic Guitar M C# -0 89 | G90 Warm Pad C F5
26 | G27 Jazz Guitar M D-0 90 | G91 Poly Pad C F#5
27 | G28Clean Guitar M D#-0 91 | G92 Hhost Pad C G5
28 [G29 Mute Guitar M Rock Kick F | E-O 92 | G93 Bowed Glass C G#5
29 [G30Over Drive M Snare 3 F | F-0 93 | G94 Metal Pad C A5
30 | G31Dist Guitar M Open HH F | F#-0 94 | G95Halo Pad C A#5
31 | G32Rock Monics C Fat Kick F | G-0 95 | G96 Sweep C B5
32 | G33JassBass M Timbales F | G#O 96 | G97IceRain M C6
33 | G34Deep Bass M Snhare 1 F | A0 97 | G98 Sound Track C C# 6
34 | G35Pick Bass M RollSnarel M | A#0 98 | G99 Crystal M D6
35 | G36Fretless M Real Kick F | BO 99 | G100 Atmosphere C D# 6
36 | G37SapBass1 M ProcesKick F|C1 100 | G101 Brightness C E6
37 | G38SlapBass2 M Side Kick F | C#l 101 | G102 Goblin C F6
38 | G39SynthBass1 M Rock Snare | F | D1 102 | G103 Echo Drop C F#6
39 | G40 SynthBass?2 C Hand Claps | F | D#1 103 | G104 Star Theme C G6
40 | G41Violin C LightSnare F] E1 104 | G105 Sitar M G#6
41 | G42Viola C Tom Lo F F1 105 | G106 Banjo M A6
42 | G43Cdlo ¢ Tite HH F F#1 106 | G107 Shamisen M A#6
43 | G44 Contra Bass C TomLo F G1 107 | G108 Koto M B 6
44 | G45Tremolo Strings | C Pedal HH F | G#1 108 | G109 Kalimba M C7
45 | G46 Pizzicato F Tom Lo F| Al 109 | G110 Scotland C CH#7
46 | G47Harp M Open HH F A#1 110 | G111 Fiddle C D7
47 | G48 Timpani C Tom Hi F B1 111 | G112 Shana C D#7
48 | G49Marcato C || TomHi F]C2 112 | GIii3Metd Béll M E7
49 | G50 Slow String C CrashCym | M | C#2 113 | G114 Agogo M F7
50 | G51Annalog Pad C Tom Hi F D2 114 | G115 Steel Drums M F#7
51 | G52 String Pad C Ride Edge F D# 2 115 | G116 Wood Block M G7
52 | G53Choir ¢ China Cym M E2 116 | G117 Taiko M GH#H7
53 | G54 Doo Voice C Ride Cup F F2 117 | G118 Tom M A7
54 | G55 Voices C Tambourine F | F#2 118 | G119 Synth Tom M A#7
55 | G56 Orch Hot F Splash Cym M G2 119 | G120 Rev Cymbol M B7
56 | G57 Trumpet C Cowbell F | G#2 120 | G121 Fret Noise M C8
57 | G58 Trombone C |[Crash Cym F | A2 121 | G122 Noise CIiff M C#8
58 | Gb59 Tuba C Vibraslap M A#2 122 | G123 Seashore M D8
59 | G60 Muted Trumpet C Ride Cym 1 M| B2 123 | G124 Birds C D#8
60 | G61 French Horn C Hi Bongo F | C3 124 | G125 Telephone C ES8
61 | G62Brass C Lo Bongo F | C#3 125 | G126 Helicopter C F8
62 | G63SynBrass1 C MuteConga | F | D3 126 | G127 Stadium C F#8
63 | G64 Syn Brass2 C Open Conga F D#3 127 | G128 Gun Shot M G8

11

