
Remote Logging in Java using Jeli: A Facility to Enhance
Development of Accessible Educational Software

Steven Robbins
Division of Computer Science

University of Texas at San Antonio
srobbins@cs.utsa.edu

Abstract

The combination of Java and the World Wide Web has
opened up new opportunities for teaching at all levels. It
is now possible to assume that all students in a class have
access to the web through a browser that supports the Java
language and a standard subset of the GUI API. One of the
drawbacks of using Java through a browser is the lack of a
standardized safe way for a Java applet to access resources
on the local machine. Security measures prevent the applet
from storing information generated by the applet on the local
machine. The Jeli package contains a logging facility that
allows an applet to store files either locally (if permitted) or
on the server from which the applet was loaded. Jeli logging
makes it significantly easier for instructors to develop applets
that can permanently store information generated by user in-
teraction with the application. The log can then be used by
the student for study or the instructor for grading.

1 Introduction

Online learning is reshaping the vision of undergraduate ed-
ucation [2, 4] Over the last three years, a large number of
web-based instructional modules have been designed to sup-
plement the undergraduate curriculum. Still, it has been es-
timated that fewer than one percent of all faculty will ever
write a reusable lesson [7]. Converting an ad hoc piece of
software into something that can be used by others is often
difficult and tedious. One solution is to use modules that can
easily be incorporated into other programs. We describe one
such module that can be incorporated into any Java program
to monitor or log the user interactions and program output.

Logging is important in any application in which data is gen-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3/00 Austin, TX, USA
© 2000 ACM 1-58113-213-1/00/0003.. .$5.00

erated in response to a user. An example of an application
in which logging plays a critical role is interactive simula-
tion. Interactive simulations allow students to perform ex-
periments similarly to what was done a decade ago in a tra-
ditional laboratory. In a typical interactive simulation, the
user provides input, performs experiments and analyzes the
resulting data. Unless the output is particularly simple and
can be copied from the screen, a facility to save the results
of an experiment is desirable. This logging of data is often
the most tedious part of the experimental process. A well-
designed experiment will provide a semi-automatic logging
facility so that the user can concentrate on the design of the
experi~nent and the analysis of the data. An appropriately
designed logging facility can also make the production of
reports much easier.

The purpose of this paper is to describe part of a Java pack-
age called Jeli that allows developers to easily incorporate
logging (storing files on disk) into both Java applets and ap-
plications with a minimal amount of difficulty. In the next
section we discuss some desirable features for a logging sys-
tem. We then discuss the limitations of logging in Java. A
simple example of local logging using Jeli is presented fol-
lowed by the extension to remote logging.

2 Desirable Features of a Logging System

Logging refers to the creation of a record of events. For ex-
ample, in a scientific experiment an experimenter keeps a log
book about experiments done. Data such as the input that the
experiment needs is written down along with the procedures
used so that the experiment can be recreated from this infor-
mation. Often one does not know which experiments will be
important, so all experiments should be logged. The simplest
way to ensure that this will be done is to make the logging
automatic and transparent.

When a student performs a simulation, the parameters are fed
into the simulator and both the input and the results should
be automatically logged. If the logging system is flexible
enough, students can enter notes into the log file before or
after the experiment. If done carefully the first time, the log
file can be handed in as a report to be graded.

114

The purpose of a utility package to perform a function such
as logging is to remove the necessity of rewriting a logging
facility each time it is needed. A general purpose logging
package should/~llow its incorporation into an existing or
new program with a minimal amount of work.

A logging system will need to interact with the user in a
number of ways. User interactions include:

• open the log
• close the log
• start the log
• stop the log
• display the log
• insert a comment into the log
• change the log filename

The simplest way to do this is to use buttons. Multifunction
buttons allow for a simpler look and feel and use less screen
real estate, often a limited resource. A single button can be
used for opening and closing the log, with the label changing
to c l o s e l o g when the log is open and back to open l o g
when it is closed. The start log, stop log and change
log filename can also share a single button, since the first
two only make sense when the log is open and the last should
be used only before opening the log file. Writing code that
consistently handles the changing of the button labels is te-
dious and time consuming.

3 Java and Logging

The combination of Java and the World Wide Web has
opened up new opportunities for teaching at all levels. It is
now possible to assume that all students in a class have access
to the web through a browser that supports the Java language
and a standard subset of the GUI API. Java is available on just
about every platform. Many free implementations are avail-
able along with a number of commercial ones. Machines are
commonly purchased with a Java-capable browser installed.

While the standardization of Java and the GUI API is still
in doubt, the popular browsers currently support a common,
sufficiently powerful subset to approximate the write once,
run everywhere promise of the Java language.

Most software for educational use consists of simple passive
demonstrations that illustrate a single concept. While these
can be useful, they often do not excite the student and there is
no direct way to measure whether any knowledge or insight is
being conveyed. Java can directly interact with the user and
allows students to explore areas that otherwise would not be
possible.

Java programs take one of two forms, the standalone applica-
tion, and the applet. Standalone applications are more pow-
erful, but require that a Java runtime system be installed. A
Java standalone application has all of the security drawbacks
of a program in any other language. A Java application can
introduce a virus into the host system, so it is necessary to

trust that it came from a reliable source.

Java applets, on the other hand, run in a sandbox and have
limited access to the machine they are running on. Unless the
security features are disabled by the user (or there are bugs in
the Java runtime environment), Java applets can be run safely
as they cannot modify the host system. This is both a blessing
and a curse. While it allows users to experiment with applets
without worrying about damage to their machine, applets that
cannot store information have limited usefulness.

Depending on the version of Java being run and the environ-
ment used for running the applet, different restrictions apply.
For example, by default, a Java applet running under Sun's
JDK 1.1 appletviewer can read from and write to the local
hard disk, while the same applet running under Sun's JDK
1.2 appletviewer can, by default, read from the local disk but
not write to it. The default action of most browsers is to not
allow applets to either read from or write t o the local disk.
Users are rightly reluctant to disable this security feature,
since it would leave their machines open to remote attacks.
One way to handle input is to have the system provide a text
box into which the user can paste a copy of the input file [8].
Logging requires output to the local machine, and while it
might be possible to use a similar technique to pass a log file,
log files are typically larger than could easily be put in a paste
buffer.

Other attempts to implement educational software have ei-
ther completely ignored the logging issue [3] or have opted
to run as a Java application [1] so as to avoid the sandbox.
Eventually, there may be some standardization to Java secu-
rity that will allow users to confidently allow some applets
to access parts of their local machine, but this remains to be
seen.

4 Local Logging with Jell

The Jell package contains a S t a n d a r d L o g B u t t ons class that
creates button-like widgets as described in Section 2. This
class keeps track of the opening and closing of the log and
changes the labels on the buttons when required. A Log
Comment button is only available when the log is open. Oth-
erwise, the same button is used to toggle between Rep l ace
01d Log and Append To 01d Log. The complete code for
a simple applet that handles logging is shown in Figure 1.
Figure 2 shows what is displayed when the log is closed and
Figure 3 shows the same applet after the 0pen Log button
has been pushed.

The four buttons created by StandardLogButtons
are at the bottom, and a Log Image and Count but-
ton is at the top. The R e g i s t e r L o g B u t t o n method in
S t a n d a r d L o g B u t t o n s allows the Log Image and Count
button to be automatically disabled when the log is closed or
stopped and enabled when the log is open or started.

The S t a n d a r d L o g B u t t o n s constructor takes a number of

115

L:

/ * <applet code = "LogDemo" WIDTH = 300 HEIGHT = 225>
< /app le t>

* /

import java.applet .*;
import java.awt.*;
import java.awt.ovent.*;
import Jell.*;
import Jeli .Logging.*;
import Jeli .Widgets.*;

public class LogDemo extends Applet
implements ActionListener {

private int remote_port = -I;
private Button LogImage;
private HelpMunager I~;
private StundardLogButtons slb;
private String browser_start ffi

"/opt/local/netscape/netscape";
private String browser_dir ffi

"file:/datal/srobbins/java/myjava/LogDemo/";
private Image pic;
private in t count = O;

public void i n i t O {
Font hmf;

half ffi new Font("Serif",Font.PLAIN,18);
]~a = new gelpManager("Log Test",heL~,null);
s lb ffi new StandardLogButtons(hm,"new user","mylog.html",

"", "k logging test", "version I",
false, remote_port);

setup_layout();
pic ffi getImage(getDocumentBaseO,"javalogo.gif");

public void paint(Graphics g) {
tn t y;
Inse ts inse t s ;
ineete = g e t I n s e t s O ;
y ffi g e t l n s e t s O . t o p + Loglmage.getBoundsO.beigbt;
g.drawlmage(pic,O,y,this);

}

private void setup_layoutO {
Panel mybuttons = new Panel();
eetLayout(new BorderLayoutO);
mybuttons.eetLayout(new GridLayout(4ol));
add("North",LogImage = new Button("Log Image and Count"));
mybuttons.add(slb. GetOpenButtonO);
mybuttone.add(elb.GetStartButtonO);
mybuttons.add(slb.GetCommentButtonO);
mybuttons.add(slb.GetShowRemoteLogButton());
add("South",mybuttons);
Loglmage.addActionLietener(thie);
Loglmage.eetEnabled(false);
slb.RegisterLogButton(LogImage);
elb.SetBrowser(broweer_start,broweer_dir);

}

public void actionPerformed (ActionEvent e)
count++;
elb.LogString("This i s count number "+count);
slb.GetLoggerO.Loglmage(pic,"A simple image",null);

}

Figure 1: A simple applet which uses Jeli logging.

parameters. The first is a HelpManager that is used by other
subpackages of the Jeli system. Here it is used just to set the
font used by the buttons. A particularly large font is used so
it will show up better in the figures. The next 5 parameters
are strings used in creation and initialization of the log file.
The first is a user name that is displayed at the beginning of

Figure 2: The demo window before the log file is open.

Close Log
Stop Log
Log Comment
Show Log

Figure 3: The demo window after the log file is open.

the log file. The second and third strings give the name of the
file and the directory in which to store the file. The last two
strings give a title and a version number that are displayed at
the top of the log file.

The next parameter is a boolean variable that indicates
whether to append to the old log file (true) or replace it
(false). The last parameter is the remote port number de-
scribed in the next section. Use 0 if not doing remote log-
ging.

116

Figure 4: The frame for entering comments into the log file.

The logging facility is designed to create HTML files that can
be viewed in a standard browser. The Show Log button can
be used to pop up a browser showing the log file created. If
local logging is used, the S e t B r o u s e r method sets the path
to the browser to bring up.

Pushing the Log Comment button pops up a frame that al-
lows the entry of comment into the log file. An example is
shown in Figure 4. Comments are typed into the lower win-
dow of the frame. They can be edited until the Log button is
pushed. At this time the C u r r e n t Comment is put into the
log file and saved in the 01d Comments window. Figure 5
shows a simple log file created by opening the log file, log-
ging an image, entering a comment, logging the image again
and closing the log.

The Log Image and Count button is not part of the Jeli
package and is included to illustrate how a program can insert
information into the log file. By registering this button with
the StandardLogButtons class, it can be automatically en-
abled and disabled as the logging is started and stopped. To
simplify the user code, the L o g S t r i n g method of the pack-
age silently does nothing when logging is inactive.

The Log Image and Count button increments a variable
that counts the number of times the button has been pushed.
It inserts a string in the log file containing that count, and
then inserts an image into the log file. The image used by
the demo was read in from a GIF file when the applet was
initialized, but it could be any Java image. Other parts of the

Figure 5: A sample log file created by the simple applet.

Jeli package use the logging of images to store graphs in the
log file. When an image is logged, Jeli converts the image
into a GIF file, stores it in the same directory as the log file,
and inserts a link to the GIF file into the log. Each time a new
image is logged, a unique filename is created for the GIF file.

5 Remote Logging

Java applets run from a browser usually may not access the
local disk. This behavior is desirable, or the simple action of
clicking on a link in a browser could allow a.hostile applet to
write to your disk.

Java applets may initiate a network connection back to the
machine from which the applet was loaded. /eli contains a
remote logging server that allows an applet to use this type
of connection to store files in a given directory on the host.
Precautions are taken so that a remote applet cannot fill up
the disk on the server machine.

The server is a Java application that takes the following com-
mand line parameters.

• The base directory for storing the files. The server
stores files in a directory structure under the directory
in which it was started. If this directory is accessible

117

by a web server, the base directory parameter should be
the web address used to get to this directory. This pa-
rameter is passed back to the client, so that it knows the
web address for viewing the log files.

• The port number for connecting to the server.

• The maximum number of megabytes that may be writ-
ten to the disk for all connections to the server.

• The maximum number of megabytes that may be writ-
ten during one connection to the server.

The server accepts connections from the Jeli logging facil-
ity. Connection requests have a particular format that makes
it unlikely that an accidental request from another source
will influence the contents of the disk on the server. The
server allows only for creating files, not for reading or delet-
ing them. The only access to the files is through a browser.
Each connection creates files in a new directory. The name
of the directory is based on the user name passed to the
StandardLogButtolas constructor, but it is guaranteed to
be unique so that the same user can perform multiple exper-
iments and keep them separate. It is expected that the server
will be started from a directory accessible to a web server
running on the same machine. The URL of the created di-
rectory is sent back to the logging package so that pushing
the Show Log button allows web pages in that directory to
be automatically displayed in a standard browser.

The server keeps track of the number of bytes logged and re-
fuses additional connections and logging requests if the spec-
ified limits are exceeded. The limits prevent the logging fa-
cility from filling up the disk on the web server, but they
still allow a malicious user to prevent others from using the
logging system.

The only change needed in the code in Figure 1 to use re-
mote logging is to specify a non-zero port number in the
S'eandaxdLogBwel;ons constructor. This port number must
be the same as the one used to start the server.

The remote logging has several advantages. The program can
be run from a browser and still produce log output. The log
file can be read from a standard browser and therefore easily
printed on the local machine.

The developer of the software can have others use it and cre-
ate log files without the need for the user to download or
install any software beyond a standard browser.

An instructor can install the software in an account owned
by the instructor on a department machine and have the stu-
dents create log files on that machines. These log files, once
created, cannot be erased or modified by the student and so
they give a valid log of what the student has done.

6 Availability

A number of interactive simulations that use the Jeli remote
logging facility have been described in the literature [5, 6]
and are available for use either remotely or by download-
ing the various Java packages [9]. The Jeli package that in-
eludes the logging facility described here is also available
separately [10] for incorporation into other programs.

7 Acknowledgments
This work has been supported by NSF grants: An Electronic
Laboratory for Operating Systems and Computer Networks,
DUE-9750953 and A Web-Based Electronic Laboratory for
Operating Systems and Computer Networks, DUE-9752165.
Richard Fellinger implemented the remote logging feature of
Jell described here.

References

[1] Barnett, L., et al., "Design and implementation of
an interactive tutorial framework." Proc. 29th SIGCSE
Technical Symposium on Computer Science Education,
1998, pp. 87-91.

[2] Harasim, L., et al., Learning Networks: A Field Guide
to Teaching and Learning Online, the MIT Press, Cam-
bridge, Mass., 1995.

[3] Khuri, S. and Hsiu-Chin, H., "Visualizing the CPU
scheduler and page replacement algorithms," Proc.
30th SIGCSE Technical Symposium on Computer Sci-
ence Education, 1999, pp. 227-231.

[4] Hechinger, J., "Textbook publisher lays plans for an
lnternet university," The Wall Street Journal, July 2,
1999.

[5] Robbins, S. and Robbins, K., "Empirical exploration in
undergraduate operating systems," Proc. 30th SIGCSE
Technical Symposium on Computer Science Education,
1999, pp. 311-315.

[6] Robbins, S., "Experimentation with bounded buffer
synchronization," Proc. 31st SIGCSE Technical Sym-
posium on Computer Science Education, 2000.

[7] Roscheile, J., et al., "Developing educational software
components," Computer, September, 1999, pp. 50-58.

[8] Stasko, J., JSamba, a Java version of Samba, described
at http://www.ce.gatech.edu/gvu/softviz/SoftViz.html

[9] http ://vip.cs.utsa.edu/nsf/

[10] http://vip.cs.utsa.edu/nsf/Jeli.html

118

