
Empirical Exploration In
Undergraduate Operating Systems

Steven Robbins
Division of Computer Science

University of Texas at San Antonio
srobbins@utsa.edu

Abstract

The undergraduate operating systems course can provide stu-
dents with a valuable introduction to empirical testing and ex-
perimentation. We have implemented a process scheduling
simulator designed to develop student empirical skills while
they are learning part of the standard operating systems cur-
riculum. The simulator is written in Java and available for di-
rect experimentation via the World Wide Web. By accessing
the remote URL through an appletviewer, students can per-
manently save input test data and simulator results generated
in HTML format. In one type of assignment, students are
given a hypothesis about process scheduling and are asked to
develop experiments to support or disprove the hypothesis.
In a second type of assignment students are asked to develop
their own hypotheses. Not only did these assignments en-
hance student understanding of process scheduling, but the
techniques exposed students to empirical approaches to val-
idation and testing.

Keywords

operating systems, process scheduling, education, under-
graduate curriculum, web-based instruction

1 Introduction

Experimentation is the centerpiece of the traditional scientific
method. Experimental exploration can provide new insights,
eliminate unproductive approaches and validate theories and
methods. Walter Tichy [4] cites several examples in the sys-
tems software area where commonly-held assumptions were
shown to be false by careful empirical studies. Computer sci-

Permission to make dlgital or hard copies of all or part of this work for
personal or classroom use 1s granted without lee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copses bear this noWe and the full citataon on the first page
To copy otherwse, to republish, to post on servers or to
redistribute to ksts, requires prior specific permission and/or a fee.
SIGCSE ‘99 3199 New Orleans, LA, USA
0 1999 ACM l-581 13-085-6/99/0003...$5.00

Kay A. Robbins
Division of Computer Science

University of Texas at San Antonio
krobbins@utsa.edu

ence, as a discipline, has a notoriously poor record in the area
of empirical validation. Several studies of computer science
publications [5,6] have shown that the percentage of papers
providing no substantiation for claims that needed experi-
mental verification was much higher than in other disciplines
in either the hard or soft sciences.

In some respects the weak computer science tradition in ex-
perimentation is not surprising given the discipline’s rapid
emergence and constant pressure for change. There is also
little evidence for movement towards a more empirically
grounded approach. While undergraduate computer science
majors may take a laboratory science as part of their general
education requirement, few computer science programs pro-
vide students with empirical experience in their discipline.

This paper describes empirical techniques and support tools
that we have developed to introduce students to empirical
exploration in the undergraduate operating systems course.
The particular example presented here is the unit on process
scheduling, but the work is part of a larger curriculum de-
velopment effort supported by the National Science Founda-
tion [7].

The typical presentation of process scheduling includes a de-
scription of idealized algorithms such as shortest job first
(SJF), first-come, first-served (FCFS) and preemptive prior-
ity scheduling. Gantt charts are used to visualize differences
in algorithms for short examples. The unit, which typically
takes about a week, ends with a discussion of multi-level
feedback queues as the method used in practice by most cur-
rent commercial operating systems. All of the standard text-
books [1, 2, 31 provide exercises on process scheduling, but
those that compare the various algorithms consider one cpu
burst of at most 5 processes. The student is left with the
impression that this is sufficient for evaluation of these algo-
rithms.

The process scheduling simulator allows students to explore
process scheduling in an empirical setting. A primary goal
is to help the students develop a better understanding of pro-
cess scheduling including the working of the algorithms and
the system parameters that influence their performance. A

311

Figure 1: A view of the main simulator window.

second goal is to expose students to empirical methods in a
realistic computer science setting.

Students are introduced to the simulator and then given two
types of assignments. In one type of assignment the stu-
dents are presented with a specific hypothesis about process
scheduling and are asked to devise and perform experiments
to support or disprove the hypothesis. In the second type
of assignment, students are asked to develop and test their
own hypotheses about process scheduling. The simulator
is designed to make the specification of a series of experi-
ments convenient. An automatic logging facility outputs ta-
bles, graphs and comments in HTML format so that the stu-
dents can easily keep track of their experiments and produce
web-based reports of results.

The next section of the paper provides an overview of the
simulator. Section 3 presents a sample assignment, and Sec-
tion 4 describes our experience with using the simulator and
hypothesis-based assignments in an undergraduate operating
systems class. Section 5 talks about the larger project and
invites participation in this project by others.

2 Simulator Overview

The process scheduling simulator provides a web-based
testbed for experimentation with process scheduling algo-
rithms. The simulator interface shown in Figure 1 makes it
easy to run experiments on collections of processes with dif-
ferent scheduling parameters and to compare such statistics
as throughput and waiting time. Information about the ex-

periment including the specification of the processes and the
statistics and graphs resulting from the experiment is stored
in a log file in HTML format suitable for viewing from a
browser.

The main simulator window shown in Figure 1 has several
distinct display areas. The subwindow in the upper left cor-
ner labeled History shows the initial configuration read in
from a configuration file when the simulator starts up. The
configuration file specifies the user’s name (which will ap-
pear in the log file) as well as information about where to
store the log file and which experiments are to be loaded into
the simulator. This subwindow can optionally display a com-
plete log of the simulation. The subwindow in the upper right
labeled Event List can be used to log all simulation events.
The various buttons in the middle right portion of the win-
dow allow detailed information about a run to be displayed
or logged, e.g. the entire history of any process including
each time it entered or left a queue. This type of tracing can
be useful in determining why an experiment turned out as it
did. The contents of either window can be downloaded into
the log file in HTML format.

There are five columns of buttons at the bottom of the main
window. The buttons in the leftmost (first) column select
and run experiments. Pushing the Change Experiment but-
ton advances through the available experiments. Pushing the
Run Experiment runs the chosen experiment until comple-
tion.

The buttons in the second column control the log file. The

312

top button opens the log file. When the log file is opened,
the button is changed to a Close Log button as shown in
Figure 1. As runs are made they are logged in the log file
and statistics about the run are saved. Pushing the Log All
Table Data button puts two tables of statistics in the log file.
The tables contain entries for all runs and include statistics
on CPU utilization, throughput, turnaround time and waiting
time. These tables can also be displayed on the screen with
the Show Data button as in Figure 2.

The buttons in the third column control graphing. Graphs
of the data produced by the simulator can be displayed or
inserted in the log file. Some of the available graphs include
average waiting time and average turnaround time. Figure 3
shows these graphs for two runs.

The buttons in the fourth column provide finer control of
the running of the simulation, while the buttons in the fifth
column control a lower level interface that allows for a more
complicated mix of processes.

Figure 2: Tables of data produced by the simulator.

2.1 Specifying an Experiment
An experimental run consists of a scheduling algorithm and
a collection of processes to be run under that algorithm. An
experiment consists of a number of experimental runs that
are to be compared and analyzed. The simulator organizes
the input information in order to make it simple to do ex-
periments in which one or more parameters vary. After the
experiment has completed, the simulator can produce tables
or graphs of various statistics such as average waiting time
and throughput.

To perform an experiment, students must create two files.
One file (the run file) contains information about the param-
eters for one of the runs. The other file (the experiment file)
contains a list of runs to be made and the parameters that vary
between runs.

Data for the simulator can be described in several ways. Par-
ticular care has been taken to allow students to generate sim-
ple experiments with a minimum of effort. The simplest in-
terface will be described here. A more detailed interface also
exists that allows a more complicated mix of processes to be
specified.

An experiment consists of a number of experimental runs.
Typically one experimental run is made and additional runs
keep almost all of the parameters the same, except for one or
two of them. In the simplest case an experiment is specified

the parameters to be modified. A typical experiment file is
given below.

comment which is ignored by the simulator but appears in the
log file. The subsequent lines specify experimental runs with
an optional list of parameters that vary. In the example given
above, three runs are made. The first uses the experimental

first, except for the distributions of CPU burst times.

An experimental run such as myrun above must specify the
process scheduling algorithm to be used, the number of pro-
cesses, the arrival time of the first process, and probability
distributions for the inter-arrival times, the durations, the
CPU bursts, and I/O bursts of the processes. It also speci-
fies the base priority under which the processes should run.
A sample file myrun.run appears below. Each line begins
with a key word that specifies a parameter followed by the
value of the parameter.

name myrun
comment A sample experimental run file
algorithm SJF
numprocs 20
firstarrival 0.0
interarrival constant 0.0
duration uniform 500.0 1000.0
cpuburst constant 50.0
ioburst constant 1.0
basepriority 1.0

The simulator allows for the setting of a seed for the portable
random number generator used for calculation of the prob-
ability distributions. This facility allows experiments to be
exactly repeated so that it is possible to later look at an ex-
periment in detail.

3 A Sample Assignment
The simulator is designed to help students see relationships
among various parameters and to be able to organize their
findings. Two types of experiments are illustrated in this sec-
tion. Experiment I presents a specific hypothesis that students
are asked to support or disprove. In Experiment II students
are also asked to develop their own hypotheses.

Experiment I:

Hypothesis: Round robin (RR) scheduling with n processes
makes each user think the machine is running at l/n-th the
speed as long as the I/O times are small.

1. Devise tests to support or disprove the hypothesis.

2. Conduct a series of experiments to determine the ef-
fect of perceived performance as a function of I/O burst
time.

Experiment II:

Hypothesis: Shortest-Job-First (SJF) and First-Come, First-
Served (FCFS) are the same when all of the processes have
exactly the same constant CPU burst time and the same con-
stant I/O burst time. When the CPU burst times vary, SJF re-
duces the average waiting time when compared with FCFS.

1. Devise tests to support or disprove the hypothesis. Ex-
plain your results.

2. Hypothesize on the influence of some other parameter
(besides CPU burst variability) on the results produced
by these two scheduling algorithms. Devise and run ex-
periments to show the influence and explain the results.

Additional Instructions:

Use the logging features of the simulator to enter your hy-
potheses, describe the parameters that you are varying and
log the results. Before running any experiments, you should
also enter into the log a paragraph explaining what results
you expect to see. As part of your analysis you should ex-
plain how the results confirmed or disproved your expecta-
tions. Edit and print out the HTML log files as your report
for this assignment.

4 Experience with the Simulator
The process scheduling simulator was introduced in an un-
dergraduate operating systems course in the Spring of 1998
after two 50-minute lectures on process scheduling. The sim-
ulator was demonstrated during the third class period using a
laptop and video projection unit. Most of the approximately
30 students had previously taken two semesters of calculus-
based probability and statistics. There were a few students in
the class with graduate training in a technical field other than
computer science, and these students showed considerably
more sophistication in their designs than the best computer
science undergraduates.

The reports were graded and returned to the students. A class
critique, summarized below, was posted on the web. The re-
sults were also discussed in class. Students indicated that the
discussion and critique were useful to them. They also felt
that it would be helpful to get feedback on one design before
they had to submit the full report. The consensus of the class
was that the experience was useful. In addition to gaining
experimental experience, students had a much clearer under-
standing of the mechanics of time sharing and the implica-
tions of the CPU burst and I/O burst times.

Some students had difficulty with the precise syntax needed
for the input files that specify the experimental parameters.
This issue was addressed by developing a GUI tool for cre-
ating these files.

Assignment Critique:

The objective of Experiment I was to show that when I/O was
small, turnaround = duration * number of processes. A rea-
sonable strategy for Experiment I was to first vary the num-
ber of processes keeping the CPU burst and process duration
fixed and the I/O burst small. In a second experiment in-
crease the I/O burst to determine the I/O burst size for which
the relationship no longer holds.

314

Many students did not make good choices for parameters for
Experiment I. Some people didn’t vary the number of pro-
cesses at all in this. Memorably bad choices of parameters
included:

1.

2.

3.

Running the simulation for 1, 2 and 3 processes. (You
probably need at least 20 processes to get statistically
significant results.)

Selecting unrealistic values for the I/O burst time. For
example, one person did an extensive study of I/O burst
times between 1 and 2 with different distributions when
the CPU burst time is 50. Another person studied I/O
burst times between 5 and 20 when CPU burst is 50.
(These I/O burst times look tiny to any algorithm. More
reasonable choices might be 1, 10, 100, 1000, 10000,
etc.)

Setting a duration of 15 and a CPU burst time of 50.
This choice causes the process to execute for less than
one CPU burst time. Pick a duration large enough that
the processes have at least 10 bursts (duration / average
cpu burst > 10). Varying the duration just indicates
when the statistics are significant.

The objective of Experiment II was to determine how vari-
ability of CPU burst time affects performance of SJF. A rea-
sonable strategy for Experiment II would be to run a few SJF
and FCFS experiments with constant CPU and I/O bursts to
verify that they give the same results. Then introduce vari-
ability into the CPU burst times and see how that influences
average waiting time. Variability can be controlled by fixing
the average for the uniform distribution and increasing the
interval around the average. Surprisingly, any variability has
the same effect as a lot of variability on SJF.

Only one person in the class correctly identified how CPU
burst variability affects turnaround time for SJF. Many people
didn’t understand what variability meant. Memorably bad
choices of parameters for Experiment II included:

1. Small durations or number of processes as in Experi-
ment I.

2. Thinking variability meant running experiments with
different constant CPU burst times.

3. Introducing distributions that had different averages so
that factors other than variability (e.g. constant 50, uni-
form 50 100, uniform 100 150, uniform 150 200) were
included.

Assignment Follow-up:

As a follow-up to the project, students were also given the
following problem on the final examination in the course:

Propose an experiment (process simulator settings and what
you are going to vary) to explore how the quantum could be
set based on system load and the characteristics of that load.
Give a specific hypothesis that you would test.

The students did reasonably well in selecting appropriate pa-
rameters. They managed to avoid most of the pitfalls men-
tioned in the assignment critique.

5 Discussion
Our preliminary use of the process scheduling simulator in
undergraduate operating systems has been very successful.
We are currently seeking feedback and participation of other
faculty who are interested in incorporating empirical methods
at the undergraduate level. If you have any comments or are
willing to test the instructional materials, please contact Steve
Robbins at srobbins@utsa. edu. The process scheduling
applet described here is part of a larger project supported by
NSF to incorporate an experimental approach into undergrad-
uate operating systems and networks courses. The web site
for the project is: http : //vip . cs . ut sa. edu/nsf /. This
applet and others are available at this site for general use.
Supporting instructional materials are also available at this
site.

6 Acknowledgements
This work has been supported by NSF grants: An Electronic
Laboratory for Operating Systems and Computer Networks,
DUE-9750953 and A Web-Based Electronic Laboratory for
Operating Systems and Computer Networks, DUE-9752165.

7 REFERENCES

VI Silberschatz, A. and Galvin, P. B., Operating System
Concepts, 5th edition, Addison-Wesley, 1998.

PI Stallings, W., Operating Systems, 2nd edition, Prentice
Hall, 1995.

131 Tanenbaum, A. S., Modern Operating Systems, Pren-
tice Hall, 1982.

[41 Tichy, W. F., “Should computer scientists experiment
more?’ IEEE Computer, May 1998, pp. 32-40.

151 Tichy, W. F., et al., “Experimental evaluation in com-
puter science: A quantitative study,” J. Systems and
Software, Jan 1995, pp. 1-18.

[61 Zelkowitz, M. V. and Wallace, D. R., “Experimen-
tal models for validating technology,” IEEE Computer,
May 1998, pp. 23-31.

[71 http://vip.cs.utsa.edu/nsf/

PI http://vip.cs.utsa.edu/nsf/processscheduling.html

315

