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Abstract 

Undergraduates are usually introduced to synchronization in 
operating systems through a discussion of classical problems 
such as reader-writer or producers-consumers. The tradi- 
tional approach to teaching these topics is not effective in 
conveying to students how programs with incorrect synchro- 
nization actually behave. This paper introduces a simple 
probabilistic model for synchronization failure and shows 
how students can empirically study these issues. These ac- 
tivities are supported by a simulator that students can use to 
explore synchronization in the context of the bounded buffer 
problem. The simulator is written in Java and can be used 
either standalone or from a standard browser. Students can 
save the data and graphs generated by the simulator in a log 
file in HTML format. 

1 Introduction 
Synchronization plays a central role in modem operating sys- 
tems and distributed computing. It is also one of the most dif- 
ficult topics to teach, partly because it is abstract and partly 
because synchronization problems depend on rare events. 
Critical sections typically comprise a very small percentage 
of the code, even when the algorithms are parallel in nature. 
On a single CPU system, a problem occurs only when one 
process loses the CPU while executing a critical section (a 
rare event) and another process enters its critical section (a 
possibly rare event). Programs in which the synchronization 
is not done correctly can give correct results most of the time. 
Failures, when they do occur, are not repeatable and may oc- 
cur at places seemingly unrelated to the synchronization. 

Several articles have proposed new ways to introduce 
synchronization into an undergraduate operating systems 
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course [1, 2, 3, 6]. The approach discussed here relies on 
experimentation by the student. Often, students, as well as 
professionals, consider a program working when it gives 
the correct answers for a fixed number of test inputs. Stu- 
dents should understand that even a large number of tests 
is not sufficient for a program that relies on synchroniza- 
tion. While a proof of correctness is beyond the scope of 
most undergraduate courses, students must learn how to 
analyze synchronous code. This paper presents a simulation 
tool for experimenting with the bounded buffer problem, a 
classical synchronization problem described in many text- 
books [7, 8, 9]. The tool allows students to determine the 
effect of ignoring synchronization issues in an empirical 
setting. 

In the next section we discuss the role of experimentation in 
the computer science curriculum. The bounded buffer prob- 
lem is then presented along with an analysis of a failure in the 
synchronization. Section 4 presents some sample questions 
and experiments that could be explored empirically through 
simulation. This is followed by a discussion of the simulation 
program and some sample results. 

2 Experimentation in Computer Science 
Experimentation is the centerpiece of the traditional scientific 
method. Experimental exploration can provide new insights, 
eliminate unproductive approaches and validate theories and 
methods. The 1991 curriculum report of the ACM [12] in- 
dicates that each area of the curriculum should employ the 
processes of theory, abstraction and design. It lists the fol- 
lowing elements of abstraction: 

• Data collection and hypothesis formation 
• Modeling and prediction 
• Design of an experiment 
• Analysis of results 

These elements are often lacking from both the undergrad- 
uate computer science curriculum and the traditional com- 
puter science research literature [10, 11, 13]. Experimenta- 
tion needs greater emphasis in the computer science curricu- 
lum at all levels. The bounded buffer simulation described 
here provides a natural mechanism for incorporating experi- 
mentation into an undergraduate operating systems course. 
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3 The Producer-Consumer Problem 
One of the simplest synchronization examples is the bounded 
buffer problem, also known as the producer-consumerprob- 
lem. Often, this example is used to introduce the importance 
of synchronization because of its wide applicability. Pro- 
ducer processes produce items that are stored in a shared cir- 
cular queue, while consumer processes remove these items 
and process them. Synchronization is needed to guarantee 
that producers do not insert items into the queue when the 
queue is full, that consumers do not try to remove items when 
the queue is empty, and that each produced item is consumed 
by exactly one consumer. 

Unsynchronized versions of the producer and consumer 
loops are shown below. The bounded buffer is implemented 
as a circular queue of size n. The number of items stored in 
the queue is kept in c o u n t e r  while in  and out  point to the 
next empty slot and the last full slot, respectively. 

Producer: 
nextp = produce(); 

while (counter == n) ; 

buffer[in] = nextp; 

in = (in + 1)Zn; 

count er++; 

Consumer: 

while (counter == O) ; 

nextc = buffer[out]; 

out = (out + 1)Zn; 

counter-- ; 

consume (nextc) ; 

When there is only one producer and one consumer on a sin- 
gle CPU system, the code is correct as long as the increment- 
ing and decrementing of the counter is atomic. However, on 
most RISC machines coun te r++  is implemented with three 
assembly language instructions: 

R1 = counter 

R1 = R1 + 1 

counter = R1 

If the producer loses the CPU after the first or second of these 
instructions and the consumer decrements the counter, the 
counter will end up with an incorrect value. If  the consumer 
decrements the counter exactly once before the producer runs 
again, the counter value will be one more than it should be. 
This case can result in an item being consumed more than 
once or an uninitialized item being consumed. Alternatively, 
if the consumer loses the CPU in the middle of decrementing 
the counter, the counter can end up with a value that is too 
small and a produced item may be overwritten before it can 
be consumed. 

An internal inconsistency occurs when the counter value 
does not agree with the number of items inserted but not re- 
moved from the buffer. At this point the program does not 
COITectly represent the actions taken by the producer and the 
consumer. 

The program may run for an arbitrarily long time after an 
internal inconsistency before it actually loses an item or con- 
sumes one twice. In fact, it may be possible for the program 
to correct itself before any actual harm is done. An external 
inconsistency occurs when the program consumes an incor- 
rect item or consumes items out of  order (indicating a lost 
item). 

The distinction between internal and external inconsistencies 
is an important one that is often overlooked in the discussion 
of synchronization. In quantum physics, a distinction is made 
between the state of a system, represented by a wave func- 
tion, and the observables of the system, the things that can 
be measured. The internal state of  a bounded buffer imple- 
mentation is not directly observable. To make it observable, 
the code needs to be instrumented or run under a debugger. 
Since failure depends on timing, the instrumentation, that is 
the act of observing the internal state, changes the probabil- 
ity of failure. This is analogous to the Heisenberg uncertainty 
principle. For this reason, simulation or analytic analysis is 
necessary. 

3.1 A Simple Analysis 

How likely is failure in the unsynchronized bounded buffer 
problem? Failure questions are difficult to answer in general, 
but it is possible to make a few simplifying assumptions to 
help gain insight. Consider the case of estimating the proba- 
bility of internal failure in the bounded buffer problem with 
one producer and one consumer. Suppose that the producer 
loop takes k cycles and that each of the three assembly lan- 
guage instructions to increment the counter takes one cycle 
to execute. The probability that when it loses the CPU, the 
producer is in this critical section is just 2/k. This alone does 
not guarantee that the program will eventually have an inter- 
nal inconsistency. The consumer still needs to execute its 
critical section. Suppose that the consumer is always ready 
and that the priorities are such that it will get the CPU be- 
fore the producer runs again. In this case the consumer is 
guaranteed to execute its critical section if the buffer is not 
empty and the quantum is longer than the consumer loop. If 
on the other hand, the quantum, q, is shorter than the loop, 
the probability of the consumer reaching its critical section 
is just q/k. 

Simple probability arguments can be used to show that if a n  
event has probability p of  occurring in an interval, the average 
number of intervals before the event occurs is liP. Thus, in 
the first case (large quantum) the average number of times the 
producer is in the CPU before failure is k/2, and the average 
number of cycles (by the producer) until failure is qk/2. 

In the second case (small quantum), the probability of failure 
is 2/k x q/k, or 2q/k 2. The average number of CPU bursts 
until failure is k2/2q and the average number of cycles until 
failure is k2/2. 

Note that the two cases agree when q = k. 
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3.2 Limitations of the Simple Analysis 

This simple analysis, which is suitable for discussion in an 
undergraduate course, has a number of limitations. The fol- 
lowing assumptions have been made. 

1) The producer and consumer never block on the buffer 
full or empty, or at least this is a rare occurrence. 

2) No I/O or other systems calls cause the process to lose 
the CPU prematurely. 

3) The program is running on a single CPU machine that is 
shared by a single producer and single consumer. Oth- 
erwise there are additional critical sections. 

4) The number of cycles in the producer and consumer 
loops are about same. This is not a necessary assump- 
tion, but it makes the analysis simpler. 

5) The scheduling algorithm is such that when one process 
loses the CPU, the other one will run before the first one 
gets in again. 

6) No pattern is established so that, for example, the pro- 
ducer does not always lose the CPU at exactly the same 
line of code. This could happen if the quantum (mea- 
sured in cycles) and the number of cycles in the loop are 
related in some fixed way. We assume that the number 
of cycles in the p roduce  and consume procedures are 
uniformly distributed in some fixed interval. 

Many questions cannot be answered with this simple analysis 
and are better addressed empirically. 

4 Sample Questions and Experiments 
Here are some questions that can be posed to operating sys- 
tems students to acquaint them with the problem in prepara- 
tion for using the simulation. 

1) Construct a sequence of events that would cause the 
counter to have a value one greater than it should. This 
is an internal inconsistency. After this internal inconsis- 
tency occurs, what type of external inconsistency could 
occur? 

2) Construct a sequence of events that would cause the 
counter to have a value one less than it should. What 
type of external inconsistency would occur after this in- 
ternal inconsistency? 

3) Assume that the loops of the producer and consumer 
take exactly k cycles each and that a quantum of one 
cycle is used. (In this scenario the processes alternate 
execution.) How many cycles would it be before an in- 
ternal inconsistency occurs? 
Note: In this case an inconsistency might not occur 
at all. If  the p r o d u c e ( )  and consume()  take a large 
amount of time compared to the other instructions, the 
consumer would block waiting for the producer to pro- 
duce one item and after that the producer would always 
be producing while the consumer is in its critical sec- 
tion. For this reason, it is useful to assume that the time 

for producing and consuming is not constant, but has 
some known average value. 

4) Give an example in which the instructions each take a 
constant amount of  time and no inconsistency will oc- 
cur. 

5) Explain how it is possible that an internal inconsistency 
could occur, but it would not lead to an external incon- 
sistency. 

Here are some ideas for experiments that could be run if a 
suitable simulator were available. 

Experiment  1: Run the simulator for a certain number of 
cycles with a given configuration. Determine the probability 
that an internal failure will occur. Determine the probability 
that an external failure will occur. Make several runs and see 
what happens. You only need to keep track of the fraction of 
the runs in which a failure occurs. 

Exper iment  2: For a given configuration run until internal 
inconsistency. Plot the distribution of the number of cycles 
until failure. Compare your results with the simple analysis 
from Section 3.1. If  the results differ, explain why this may 
be. For the same configuration, determine the average num- 
ber of cycles before external inconsistency. Compare these. 

Exper iment  3: The simple analysis predicts that when the 
• quantum is large, the average number of cycles until internal 
inconsistency is proportional to the square of the number of 
cycles in the loop. Design and perform experiments ~o test 
this hypothesis. Perform the same experiments with external 
inconsistency. 

Experiment  4: Determine the effect of the quantum on the 
average number of  cycles until an internal failure occurs. The 
simple analysis predicts that there is a range of values for 
which the dependence is linear. Is this supported by the sim- 
ulation? 

The bounded buffer simulator described below allows stu- 
dents to perform each of the experiments described above 
and collects the data necessary for analysis of these experi- 
ments in a log file. 

5 The Simulation Program 
The main window of the simulation program is shown in Fig- 
ure 1. The buffer and the shared variables are shown at the 
top, followed by the producer and consumer code with the 
number of cycles required for each line. Also displayed are 
the number of times each line was interrupted by a quantum 
expiration and the number of times it was executed. Below 
the code is a panel of  buttons for controlling the simulator 
and an area for displaying information about the progress of 
the simulation. 

The code for the producer and consumer is hard-coded into 
the program. In this implementation a process executes a 
y i e l d  instruction when it blocks. This just puts the process 
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Figure 1: A view of the main simulator window. 

back in the ready queue. The quantum and the number of 
cycles required for each line of code are set in a configu- 
ration file, allowing students to experiment with the effect 
of changing these parameters. The simulator can be run in 
several modes depending on the level of detail required. 

At the lowest level, the user can step through the code one 
cycle at a time, manually switch active processes, or run a 
fixed (user settable) number of cycles allowing the quantum 
to determine which process is running. 

At the next level of detail, the user can perform a single run of 
the program. The run can be set to terminate after a certain 
number of cycles, when the protocol fails, or when either 
the protocol fails or a certain number of cycles have been 
executed. The failure test can be either in terms of internal 
inconsistency or external inconsistency. 

Lastly, multiple runs can be set up and statistics gathered for 
the runs. 

The simulator creates tables and graphs of statistics in a log 
file in HTML format so that they can be viewed from a stan- 
dard browser. The graphs are stored as GIF images. This 
facility allows students to easily produce a log file of an ex- 
periment that can be printed out or viewed on line. A sample 
log file is shown in Figure 2. The result of one experiment is 
shown. In this experiment, 100 runs are done, each stopping 
when an external failure occurs. The simulator keeps track 
of when the first iuternal failure of  each run occurs. The 
average number of cycles until internal failure is 7797.23, 
while the average for external failure is 147,934.19 cycles. 
A histogram comparing the number of cycles until internal 
or external failure is shown at the end of the log file. 

The simulator is written in Java and uses the Jeli [16] pack- 
age and both were developed as part of an NSF grant [14]. 
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Figure 2: A portion of a log file as seen from a browser. 

This simulator is one of a number of interactive simulations 
developed as part of this grant for use in the computer sci- 
ence curriculum [4]. The simulator can be downloaded and 
run on any machine supporting Java. This method of execu- 
tion allows users to set their own configuration files and store 
log files locally. Alternatively, the simulator can be run from 
a standard browser by just giving it the appropriate remote 
URL. The Jeli package allows applets run from a browser to 
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log remotely [5] and our server is set up to store the log files 
generated. These can be viewed by the same browser and 
either downloaded or printed locally. Information on down- 
loading, running remotely, and using the simulator is also 
available through the web [15]. 

6 Sample Results 
Figure 2 shows the result of 100 runs until external failure 
for a case in which the number of cycles in a producer or 
consumer loop, k,= 100 and the quantum, q,= 40. It also 
shows when the first internal failure occurred on each run. 
The analysis in Section 3.1 predicts that since the quantum is 
small, the average number of producer cycles until failure is 
k 2/2 = 5,000 and since the consumer and producer execute 
about the same number of cycles, the total for the two would 
be 10,000. The average from the simulation, 7797.23, was 
off by about 22%. The analysis predicts that the number of 
cycles until failure should be independent of the quantum for 
small values of the quantum, and then grow liniearly with 
the quantum. When the simulator was run for values of the 
quantum between 5 and 100, the average number of cycles 
remained in the range from 6270 to 9848. When the quan- 
tum was raised above 150, the number of cycles started to 
grow at about a linear rate, reaching a value over 50,000 for 
a quantum of 800. 

A surprising result was obtained with the configuration 
shown in the log file of Figure 2. The minimum number 
of cycles to obtain internal inconsistency for 100 runs was 
645 with a maximum of 25,491 and an average of 7797.23. 
The same runs until external inconsistency had a minimum 
of 1086 and a maximum of 553,210 with an average of 
147,934.19. It took on the average almost 20 times as long 
to reach external inconsistency as to reach internal inconsis- 
tency. 

7 Conclusions 
The simulator is a valuable tool that can be used in the con- 
text of an undergraduate operating systems course. Students 
often accept a program as being correct when it produces the 
correct result under a small number of test conditions. An 
important insight that can be gained from the simulator is the 
difference between internal and external inconsistencies. A 
program can become internally inconsistent while still pro- 
ducing correct results for some time. 

Use of the simulator also gives students experience with ab- 
straction. The analysis in Section 3.1 gives a model of the 
program and predicts a relationship between the number of 
cycles until failure and certain parameters of the systems such 
as the size of the quantum and the relative size of the critical 
section. Experiment 2 in Section 4 proposes an experiment 
that a student can design to test this analysis. The student 
then has to collect data and analyze the results. 
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