
Exploration of Process Interaction in Operating Systems:
A Pipe-Fork Simulator

Steven Robbins
Department of Computer Science

University of Texas at San Antonio
srobbins @cs,utsa.edu

Abstract This paper examines the use of a simulator to ex-
plore process interaction in Unix. The simulator allows in-
structors to trace through a variety of programs and to show
how the processes and pipes are connected. Students can cre-
ate C language programs and see how changes in their code
or changes in process scheduling affect the configuration of
the processes and pipes as well as the output of the program.
Students can also see the consequences of not protecting crit-
ical sections in an executing program. The simulator is flex-
ible enough to allow the creation of process fans, chains and
trees as well as unidirectional and bidirectional rings. The
program is written in Java and can be run as a standalone
application or as an applet from a browser.

1 I n t r o d u c t i o n

Teaching about the interaction of processes and resource
sharing in operating systems is difficult, partly because of
the scarcity of concrete examples. One of the simplest exam-
ples is a process that forks a child after creating a pipe. The
pipe is shared by the original process and the child. One of
the two processes can write to the pipe and the other can read
from it. Figure 1 shows the situation after a new process has
created a pipe and then forks a child. Processes are repre-
sented by ovals and pipes are represented by rectangles. The
arrows represent communication paths and are labeled by the
corresponding file descriptor. Each of the two processes, A
and B, can write to the pipe using file descriptor 4 and read
from it using file descriptor 3.

Two types of interaction are possible. The most obvious in-
teraction is through communication. Processes can also in-
teract by accessing a shared resource in a critical section.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or dislributad for profit or commercial advantage and that
copies beax this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee,
SIGCSE'02, February 27- March 3, 2002, Covington, Kentoeky, USA.
Copyright 2002 ACM 1-58113-473-8/02/0002...$5.00.

Although small writes to a pipe are atomic, writes to other
shared resonrces, such as standard error, may not be. A write
to standard error, particularly if it is in a loop, would be a
critical section that needs to be protected.

121

~ i t l

lOl [2] - ' ' - - *

Figure l : The result of creating a pipe followed by forking a
child.

Once a process has written to the pipe in Figure 1, either
process can read that information. In order to establish reli-
able communication in which a process will only read what
the other process has written, two pipes are necessary. The
code below illustrates this and also redirects standard input
and output so that they access the pipes. Figure 2 shows the
result.

#include <unistd. h>

int fd[2] ;
pid_t haschild;

pipe (fd) ;

dup2 (fd [0], STDIN_FILENO) ;

dup2(fd[1] , STDOUT_FILENO) ;

close (fd[O]) ;
elose(fd [1]) ;
pipe (fd) ;

if (haschild = fork())
dup2 (fd [I], STDSUT_FILENO) ;

else

dup2 (fd [0], STDIN_FILENO) ;

close(fd[O]) ;

close(fd [i]) ;

Whatever either process writes to standard output can be read
by the other process from standard input. This is a nng of

351

[2 1

Figure 2: A ring of two processes.

two processes. It can be extended to more processes just by
inserting part o f the code in a loop [1]. The s imple code can
fo rm a basis for a number o f examples and student projects
involving interprocess communicat ion. See Chapter 4 o f [2]
for details.

W h e n teaching this material I usually trace through the ring
o f two or three processes drawing diagrams similar to Fig-
ure 2. Each t ime a dup2 or c l o s e is executed, lines need to
be erased. This makes it difficult for students to take notes,
and mos t students do not really understand what is going on
until they try it themselves. The example is a worthwhi le ex-
ercise, as it enhances student understanding of file descriptor
tables and forking a process. It is good for teaching the dis-
t inction between resources that are part o f the process space
and get duplicated by a f o r k and those that are part o f the
kernel space and are shared.

The ring code is simple, but the processes fo rm a ring only
in the sense o f communicat ion. The ring structure can be
exploited only after additional code to communica te among
the processes is added. It is not obvious how minor mod-
ifications o f the code change the communica t ion topology,
and it is not s imple to devise a procedure for deterrn.ining the
topo logy once the code it written. Tracing the program for
more than 3 processes is difficult. I f a mistake is made during
tracing, it is difficult to recover without starting over.

2 T h e S i m u l a t o r
All o f these issues led to the development o f a s imple sim-
ulator to allow experimentat ion with p i p e , dup2, f o r k and
c l o s e . The simulator is a Java program that can be run ei-
ther as an applet f rom a browser or as an application. It is
available to be run f rom any machine connected to the Inter-
net [5]. Figure 3 shows the main simulator window after it
has run a program to create a ring o f 5 processes. The upper
left c o m e r shows a d iagram o f the processes, pipes and file
descriptors. The file descriptors for standard error are not
shown. Initially, there is one process with process ID 100.
As processes are created, process IDs are assigned sequen-
tially. The upper fight corner shows the code to be executed,
with an arrow indicating the current p rogram counter o f the
active process. The rest o f the window consists o f buttons

"L . i " . , n l i t i l " ~ l i ~ i 0 i i l ° i ".

dm~llallL ll~

:'27
d~ i t : lP l l
~ t - - i H l l l i ,

I ":I'

Figure 3: The main window of the simulator after running a
program that creates a ring of 5 processes. The program exe-
cuted is shown in the upper right part of the window.

and labels for controll ing the simulator.

The simulat ion program has two modes o f operation. In Pro-
gram Mode the program can be modified. Instructions can
be inserted or deleted. In Execute Mode the program can
be run, either by single stepping through the code or run-
ning until completion. The s imulator assumes a single CPU
and includes several options for controll ing the sehednling o f
multiple processes.

2.1 The Program

The user can modi fy the program, as long as the general
structure is kept. The general structure o f the program is
as follows:

<instructions>
for (i=O;i<nprocs;i++) {

<instructions>
if (childpid = fork()) {

<instructions>
}

else {
<instructions>

}

<instructions>

<break instruction>
}

<instructions>

In six places, an arbitrary list o f instructions taken f rom a
fixed set are allowed. The break instruction allows four op-
tions for breaking out o f the for loop: parent only, child only,
both, and neither.

The program assumes the fol lowing declarations:

352

int i ;
int nprocs ;
int childpid;
int fd[2] ;
int fdl[2] ;
char buf [BUFSIZE] ;

where BUFSIZE is sufficiently large to hold any input
generated• Some of the instructions allowed include:

pipe (fd) ;
dup2(fd[0],0); dup2(fd[l],l);
close(0); close(l);
close(fd[0]); close(fd[l]);
wait (NULL) ;

There are similar instructions for fdl and a number of I~O
instructions. There are instructions for filling or appending to
bur character strings containing values of the variables i and
c h i l d p i d and process and parent process IDs. It can also be
filled or appended with data read from standard input (as read
from one of the pipes) and the contents of the buffer can be
written to standard output (to write to a pipe) or standard
error (to become output of the program). A complete user 's
guide is available [5] that explains all of the instructions and
options for running the simulator.

3 Examples of Using the Simulator
There are many ways to use the simulator either for class
demos or assignments. The class demo requires a computer
with projection display. The program will run on any plat-
form that supports Java and can be run from a browser, so that
the program need not be loaded onto the target machine if the
machine has access to the Internet. Students can download
the program and run it on their home machines.

3.1 Process fans, chains, and trees

By eliminating the p i p e , dup2 and c l o s e lines from the
code we can get a process fan (all forked processes have a
common parent), a process chain (each process except the
last has a single child) or a process tree (processes have dif-
ferent numbers of children). These examples are gotten by
modifying the break instruction to have the child break, the
parent break, or neither break, respectively. The simulator
display can be set to show the parent-child relationships with
an arrow from the parent to the child. Figure 4 shows the
diagram generated by the simulator for a process fan and a
process chain. Figure 5 shows the output generated by the
simulator for a process tree on the left. The user can move
the processes around to produce the diagram on the right with
about a minute's work.

3.2 Tracing the standard ring of p r o c e s s e s

The simulator can be used to trace the creation of processes
and pipes by single stepping through the program. This has
been done successfully in class and is a great improvement

. " 'L " ' . . ,
/ \

/ \
; \
i \ :

.

/
/

/
®

Figure 4: A fan and a chain of processes.

Figure 5: A tree of processes.

over doing it on the blackboard.

3.3 Experiments

There are many ways of making small changes in the stan-
dard ring program and most of these have consequences that
would be hard to predict. Some changes in the ring code af-
fect the internals of the program without affecting the running
of the program or the output generated.

Exper iment 1: Figure 6 shows the result of rurming the sim-
ulator omitting the two c l o s e statements at the beginning of
the program• On the left is the result of rurming the program
until the second pipe is generated. The upper diagram is the
ofiginal program with the two close statements. File de-
scriptors 3 and 4 are used for the second pipe (pipe 1). The
lower diagram shows the result up to this point the the two
close statements removed. Now file descriptors 5 and 6 are
used for this pipe. The diagram on the right shows the re-
suit after the program completes. While the ring is correct
and still uses standard input and output for communication,
most of the processes can now access pipe 0, and so process
100 will not detect end-of-file on this pipe until all processes
close their connections.

Exper iment 2: In the original ring, the parent dups stan-
dard output, and the child dups standard input. What would
happen if this were reversed? Figure 7 shows the result of
running the simulator with this change. The diagram on the
left comes from running the simulator with the dups inter-
changed. The diagram on the fight is more clear and shows
the result after each pipe has been manually rotated 180 de-
grees by the user. Now it is easy to see that the data flows in

353

The original p r o g r a m

C l o s e removed
Figure 6: The result of omitting the first two close statements
from the ring of processes. After the second pipe is created (left)
and the final result (right).

@f
Figure 7: The diagram of the ring in which the parent dups
standard input and the child dups standard output.

Figure g: The diagram of the ring with the child breaking in-
stead of the parent.

the opposite direction. That is, data flows toward processes
with smaller PID rather than larger ones. This gives a hint as
to how to make a bidirectional ring.

E x p e r i m e n t 3: Figure 8 shows the result of having the child
break out of the loop instead of the parent. The diagram on
the left was produced by the simulator running the program.
In the diagram on the right, the user has reorganized the dis-
play to show data flow in the opposite direction.

3.4 Scheduling

If a program creates a process chain and each process outputs
to the same resource, say standard error, how is the order of
the output related to the order of creation of the processes7 If
such a program were run 100 times and each time the output
were the same, can you conclude that the output will always
be in the same order? The order of the output is determined
by the scheduling of the processes. The simulator lets you
control the scheduling in several ways. A process will al-
ways leave the CPU when it blocks waiting for input. The

scheduling is determined by what happens in each of the fol-
lowing situations:

• A process blocks for I/O or terminates:
The simulator allows for three possibilities when a
process blocks or terminates: first-come/first-served
(FCFS), the next highest process ID, or random.

• A process forks:
The simulator allows the following modes: parent al-
ways executes, child always executes, parent or child
executes with one randomly selected, any ready process
executes with one chosen randomly.

• A process executes a non-blocking instruction:
The simulator allows no preemption, round robin with
a given quantum, where the quantum is a number of
instructions, and random scheduling in which a process
has a settable probability of losing the CPU after each
instruction.

• A process does a non-blocking I/O request:
The simulator never blocks on writes. Writes to a pipe
are always atomic. It blocks on reads when there is no
input available and a process exists that can write to the
pipe. A read from a pipe will read all data currently
in the pipe. The simulator can handle output to stan-
dard error either atomically without losing the CPU, or
it can lose the CPU with a given probability after each
character is output.

3.5 Interleaving of output

One of the common problems in concurrency is the inter-
leaving of data from multiple processes attempting to output
to the same device. When I first started giving assignments
concerning this about a dozen years ago, my standard ex-
ample was a program that would fork several times and have
each process write a one-line message to standard output. On
most machines, the output would be interleaved when about
a half dozen processes were involved. At least one of the
lines of output would be combined with another one, show-
ing the need to protect the critical sections of this program.
The same example no longer works on today's machines, as
the probability of having interleaved output has been reduced
by the speed of the machines and other factors. This makes
the problem even more important as the most difficult prob-
lems to solve are the ones that occux infrequently.

The simulator program supports output of strings to standard
error. The strings may contain the process ID of the process
sending the string, the process ID of the parent process, and
the values of program variables such as i and c h i l d p i d .
A window can be popped up showing the output generated
by the program. The output generated by each process can
be shown in a distinct color, allowing the user to easily see
which characters are sent by each process. The simulator can
he set to either have the output of an f p r i n t f be atomic, or
have a given probability of losing the CPU after each char-

354

acter is sent. Students can experiment to see how this proba-
bility affects the perceived output.

One way to protect this critical section is to have each pro-
cess wait for its child to complete before sending output to
standard error. Another method is to pass a token around the
ring and allowing only the process with the token to produce
output. Both of these can be tested with the simulator.

3.6 Fibonacci number calculation

A simple example of using the ring connectivity is the calcu-
lation of Fibonacci numbers [2]. The first process sends the
first two Fibonacci numbers (1 and 1) to the next process in
the ring in the form of an ASCII string. Each process then
reads from the ring, decodes the two numbers, xl. and x2 and
sends the string corresponding to x2 and x l+x2 to the next
process. This continues for a certain number of iterations or
until the calculation fails due to overflow. The simulator sup-
ports the call to a function, f i b c o n v e r t (c h a r *bur) that
converts the input string to the output string needed for this
computation.

3.7 Bidirectional ring

The simulator supports the use of a second array of file de-
scriptors, f d l [2] and the corresponding p ipe , dup2, and
c l o s e functions to allow two pipes to be created on each it-
eration of the loop. Students can then write a program that
creates a bidirectional ring in which file descriptor 1 (stan-
dard outpu0 is used to send data in one direction and file de-
scriptor 3 is used to send data in the other. Figure 9 shows the
figure created by the simulator when a correct bidirectional
ring program is run.

t

r

)
b

Figure 9: A bidirectional ring of processes.

4 Saving Programs and Logging
The simulator uses the Jeli package for logging [3]. An
HTML log file can be created that contains the history of
any process (what instructions it executed) and the output
generated. The diagrams in the upper left and right comers
of the simulalor window can also be put in the log file. This
allows students to create programs using the simulator and
then compile and run the C code generated. Programs to be
run by the simulator can either be created on the fly by the
simulator or read in from a file.

5 Conclusions
The simulator was used in an undergraduate Operating Sys-
tems class in Spring 2001. First the students were asked to
compile a version of the ring program written in C and run
it with 5 processes. They were to observe the order of the
output and how the output was affected by putting a w a i t
command in various places. After a quick demo of the simu-
lator, the students were asked to run the simulator on the same
code and to experiment with the effect of different schedul-
ing choices. They were to compare these with the results
from running the C program. They were also asked to use
the simulator to create a bidirectional ring. Most students
were able to accomplish this task after the hint of looking at
Experiment 2 from Section 3.3. The students enjoyed using
the simulator and it generated favorable comments.

6 Acknowledgments
This work has been supported by an NSF grant: A Web-Based
Electronic Laboratory for Operating Systems and Computer
Networks, DUE-9752165 and is one of a collection of sim-
ulators designed supplement the teaching of operating sys-
terns [4].

References
[1] Robbins, K. A., Wagner, N. and Wenzel, D. J., Vir-

tual rings: an introduction to concurrency. Proc. 20th
SIGCSE Technical Symposium on Computer Science
Education, 1989, pp. 23-28.

[2] Robbins, K. and Robbins, S., Practical UNIX Pro-
gramming, A Guide to Concurrency, Communication,
and Multithreading, Prentice Hall, 1996.

[3] Robbins, S., "Remote logging in Java using Jeli: A fa-
cility to enhance development of accessible educational
software," Proc. 31st SIGCSE Technical Symposium on
Computer Science Education, 2000, pp. 114-118.

[4] Robbins, S., NSF projects, 1999. Online. Interact.
Available WWW: http:/Ivip.es.utsa.edu/nsfl

[5] Robbins, S., Process ring simulator, 2001. Online. In-
ternet. Available WWW: http://vip.cs.utsa.edu/nsf/ring/

355

