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ABSTRACT
This paper describes a simulator that allows users to explore con-
current I/O in UNIX. UNIX I/O provides an interesting example of
how a shared variable, in this case the file offset, can be affected
by concurrent access. The examples given can run on the simula-
tor or a real UNIX-like system such as Linux, Solaris for Mac OS
X. The simulator can run programs written by the user and display
pictorially the relationship among various data structures involved
in I/O, including the process file descriptor table, the system open
file table, the inodes, and the data stored on disk. The user can run
the program slowly, or step forward or back through the program
to examine the data structures in detail. The simulator supports the
creation of both child processes and threads as well as open, close,
read, write, wait, join and detach instructions. The simulator is
freely available for download. It can be also be used directly from
a browser without the need for installation.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information Science
Education—Computer Science Education

General Terms
Concurrent I/O

Keywords
operating systems, systems programming

1. INTRODUCTION
Teaching concurrency in undergraduate operating systems

courses is always a challenge. Most of the early examples illustrat-
ing concurrency given in books involve access to shared variables.
Unfortunately, unless students are prepared to write programs
involving shared memory or threads, it is difficult to come up with
realistic examples that the students can experiment with.

One example that does not require advanced programming tech-
niques involves concurrent I/O. When a UNIX process forks a child
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after a file is open, the parent and child share the file offset and care
must be taken when both processes do I/O to this file.

This paper describes a simulator that allows users to explore the
mechanism and consequences of concurrent I/O. The simulator sup-
ports both read and write instructions. The read instructions read
into memory buffers which are assumed to be sufficiently large ar-
rays. The simulator assumes that users want to load a buffer from
the contents of a disk file. In C, a call to read is considered suc-
cessful if any number (greater than 0) of bytes is read, even if this
number is less than the requested number. A read, even from an
ordinary file, is not guaranteed to always read the number of bytes
requested, even if there are sufficient bytes in the file to satisfy the
request. More often, these partial reads occur when reading from a
pipe or network, but since programs should be written in a device-
independent manner, we cannot assume that all read system calls
return the number of bytes requested. While Java has a readFully
method for some input streams, C does not. Therefore, it is usually
up to the programmer to perform read operations in a loop until all
desired bytes are read. If all of the bytes must be read before any
are processed, this requires multiple reads, each appending to the
end of a buffer. We do this by keeping track of the number of bytes
already read (the variable total in the simulator) and passing to the
read function a pointer to the position for the next read. Then total
must be incremented by the number of bytes read to prepare for the
next read operation. This leads to a read instruction in the form:

total += read(fd, buf+total, n);
To simplify the types of programs handled by the simulator, we as-
sume that all read instructions return the number of bytes requested
or the number of bytes remaining in the file, whichever is less. How-
ever, the format of the read instruction allows us to simulate the type
of code that would not make this assumption.

While writing to a pipe or FIFO is atomic when the number of
bytes written is small enough, writing to another device, such as a
file or network, is not. Also, a write may return fewer bytes than
requested for a number of reasons. The write instructions handled
by the simulator looks like:

write(fd,"ABCDEFG",n);
where the second argument can be any constant string. This will
always write the number of bytes requested (n, unlike in a real sys-
tem) and will write garbage into the file if the string is too short
(just as in a real system).

The rest of the paper is organized as follows. Section two reviews
the I/O mechanism in UNIX. Section 3 describes the basic opera-
tion of the simulator. In section 4 we look at using the simulator to
explore concurrency among processes. Section 5 deals with concur-
rency among threads. Section 6 discusses non-atomic I/O. Section
7 discusses using the simulator for classroom demonstrations and
assignments and discusses availability.



2. UNIX I/O
In traditional UNIX systems, at least three tables are involved

when I/O is performed [1]. The file descriptor table (FDT) (at least
conceptually) resides in each process and can be thought of as an
array of pointers indexed by an integer file descriptor. This FDT
is sometimes referred to as the process-specific open file table [3]
or the table of open files (per process) [5] and contains pointers
to entries in a kernel structure. This kernel structure is sometimes
called the file structure table [3, 5], the open file table [2], the open
file description [7], or just the file table [1, 6]. We will call it the
system file table (SFT) so that it is clear that it resides in the kernel.
This table contains one entry for each open file. Each time open
is called by a process, a new entry is created. The entries of the
SFT contain the file offset, a count of the number of FDT entries
pointing to it (so the entry can be freed when it is no longer needed)
and a pointer to an in-memory copy of the inode for this file. We
assume that these copies of the inodes are kept in a table which we
will call the in-memory inode table. The information in the inode
that we are concerned about here includes the file permissions and
the location (on disk) of the data blocks of the file. Our files are all
small so we assume that each file contains only a single block.

When a fork is executed in UNIX, the child gets a copy of the par-
ent’s file descriptor table. Corresponding entries in the parent and
child FDTs point to the same entry in the SFT. SFT entries contain
the file offset used by read and write operations, so the parent and
the child share the file offset. They can each manipulate this shared
resource using read and write operations, and the consequences of
this sharing can be immediately apparent. Two processes that share
a SFT entry for reading from the file will read from different parts
of the file. Alternatively, if each process calls open after the fork
occurs, two opens are executed and two separate entries in the SFT
are created. The processes use different entries in SFT and there-
fore each has its own file offset. The first read from each process
reads from the start of the file.

3. THE SIMULATOR
This section describes the simplest operation of the simulator.

More details can be found in the users guide [4].
Figure 1 shows the initial simulator startup window. The sim-

ulator starts by reading a configuration file. Among other things,
the configuration file contains the names of the programs that the
simulator can access as well as the names and contents of the input
files. The user space of Figure 1 contains the program:
fork();
fd = open("infile",O RDONLY);
total += read(fd,buf+total,2);
total += read(fd,buf+total,2);
close(fd);

which uses one input file containing abcdefghijklmnop.
The screen is divided into sections. The top part of the screen

shows a pictorial representation of the computer system. The bot-
tom part has a collection of clickable buttons and other controls that
modify the simulator properties and run the simulation. The top part
of the screen is divided into three sections. These sections, from left
to right are the User Space which shows the processes and threads,
the System Space which shows the system open file table (SFT),
the in-memory inodes and the list of processes, and the Disk Space
which shows the disk blocks.

The User Space is divided horizontally into sections for each
process. Figure 2 shows the simulator after the main process has
executed a fork instruction. There are now two processes. Each
user process area contains a box representing the process variables,

a box containing the program, additional boxes contain the code for
threads that have been created (there are no additional threads in
Figure 2), and a box representing the process file descriptor table
(FDT).

The variables box also shows the process ID and the parent pro-
cess ID at the top. This parent process ID shown is the parent that
created the process, even if that parent terminated before the child
does. The simulator uses character arrays in the form bufn and in-
teger variables in the form totaln, childn, and fdn, where n is any
positive integer. The n can also be omitted completely, as in the
examples in this paper. All variables are assumed to be declared
and appear in the variable list when they are initialized by program
execution.

The program appears to the right of the variables. The � symbol
indicates the program counter. It changes to � when the process is
suspended waiting for a child or joining a thread and it appears in
red for the currently running process.

The file descriptor box has an entry for each open file descriptor.
File descriptors 0, 1, and 2 (standard input, output, and error) are
shown at the top. The simulator programs do not use these so no
additional information is given about them. Each additional open
file descriptor appears on its own line with an arrow pointing to the
corresponding entry in the system open file table (SFT).

The System Space area shows three tables. At the top on the
left is the SFT. This table has an entry for each open file. The
simulator does not show the entries corresponding to standard input,
output and error since the simulator programs do not use these.
Three lines of information are shown for each open file. The first
line indicates whether the file is open for reading or writing. The
simulator only supports files open for one or the other, not both.
Also shown on this line is the name of the file represented by this
entry. This information is not contained in an actual SFT entry, but
it is helpful here for understanding the operation of the simulator.
The second line gives the file offset to be used by the next I/O
operation using this entry. The third line in the entry shows a count
of the number of file descriptor table entries that are using this entry.
When the count is decremented (a process closes a file descriptor)
to 0, the entry is removed. Arrows represent pointers stored at the
source of the arrow. There is an arrow from each file descriptor
table entry to the corresponding entry in the SFT. Each entry in the
SFT has an arrow to an entry in the in-memory inode table.

To the right of the SFT is the in-memory inode table. This table
contains one entry for each file that is open or has recently been
opened. The simulator keeps these entries around even after no
more open files refer to them. The first line of each entry gives a
count of the number of SFT entries using this inode. This count
should equal the number of arrows into the entry from the SFT.
The second line indicates the permissions of the file. The simulator
only supports two permissions, read only and write only. When the
count is 0, the third line shows the name of the file. Otherwise,
it indicates if the file is locked. The only lock supported by the
simulator is related to the atomic write operations when the file is
open with the O APPEND flag.

Each inode has a single arrow coming out pointing to the disk
block containing the contents of the file. The simulator assumes
that all files fit in a single block. The disk blocks are shown in the
Disk Space area.

Lastly, in the System Space area, the list of processes is shown at
the lower left. One line is shown for each process giving its process
ID and current state: running, ready, waiting for a child, joining a
thread, zombie, or terminated. The parent of the original process
has ID 1000, and we assume that this process is waiting for its child
to complete. If a terminated process has its parent terminate before



Figure 1: The simulator when it is first started.

Figure 2: The simulator after a few instruction have been executed.

the parent waits for it, the child process is immediately inherited by
the init process which waits for it.

The lower region of the simulator window of Figure 1 has five
columns of buttons and controls. The first column controls logging
functions and columns 2 through 4 mainly control scheduling. The
last column contains buttons for running the simulator. The Step
button executes one instruction of the running process. The Run
button runs the program with a delay between instructions so you
can watch the execution. You can vary the delay with the slider that
is just to the left of the Run button. The default is to delay 1 sec-
ond between instructions. When the program is running, the Run
button changes to Pause which allows you to temporarily pause ex-
ecution. When pushed, the button changes to Resume. The Reset
button allows you to restart the program from the beginning. After
some instructions have been executed, the Step Back and Step For-
ward buttons can be used to move back thought previous executed
instructions so you can redo the execution and examine the tables
at any point in the execution.

The simulator assumes that all instructions will execute without
error if possible. Errors are classified as either fatal or non-fatal.
Fatal errors include accessing an uninitialized variable or attempt-
ing to open a file with the incorrect permissions. Non-fatal errors
include waiting for a child when no non-waited for children exist or
closing a file that is not open. The running of a program always ter-
minates when a fatal error occurs. Optionally, it can also terminate
on non-fatal errors.

All I/O operations on valid file descriptors return without error.
Writes always return the number of bytes requested to write and
reads return the number of bytes requested or the number of bytes
left to read in the file. By default, I/O is atomic so that a program
does not lose the CPU during execution of an I/O instruction. Al-
ternatively, the simulator can be set for non-atomic I/O. In this case,
a slider determines the probability that the process loses the CPU
after each byte is processed. Figure 3 shows a process that has lost
the CPU after the first of two bytes have been read. One byte has
been put in buf but the read has not returned so total has not been
updated.

Figure 3: The CPU has been lost during an non-atomic read
operation.



When a program is run with the run button, the simulator sched-
ules the processes for the CPU using one of several standard al-
gorithms. The user can choose non-preemptive scheduling, round
robin with a given quantum, or random scheduling. In round robin
scheduling, the quantum determines the number of instructions
that can be executed before the process loses the CPU. In random
scheduling, after each instruction is executed, the process loses the
CPU with a given user-controllable probability. There are 3 options
for how the next runnable process is chosen. These are FCFS, next
ID, and random. In addition, forks and thread creation are treated in
a special way, with 4 possibilities on which happens after each. For
a fork, these are parent continues, child continues, either parent or
child continues with equal probability, or random. In the last case
a random ready process is chosen after a fork.

You can create a log file in HTML format on the fly. At any
time you may include the diagram shown at the top of the simulator
window along with the scheduling parameters.

The programs used by the simulator are read from ordinary disk
files. A number of programs are included in the simulator distribu-
tion including the ones discussed in the following sections. Students
can create additional programs with an ordinary text editor, and the
simulator will find them if their names appear in the configuration
file.

4. CONCURRENCY AMONG PROCESSES
A simple way to illustrate the interaction between the FDT and

the SFT is to compare the action of these similar programs:

Program 1 Program 2
fork(); fd = open("infile",O RDONLY);
fd = open("infile",O RDONLY); fork();
total += read(fd,buf+total,2); total += read(fd,buf+total,2);
total += read(fd,buf+total,2); total += read(fd,buf+total,2);
close(fd); close(fd);

Figure 4 shows a part of the simulator diagram for each of these
programs after fork and open have been executed. In Program 1,
each process executes open so there are two distinct entries in the
SFT, and therefore two file offsets. Each entry shows a count of
1. Both entries point to the same in-memory inode which shows a
count of 2, indicating that two SFT entries are referencing it. When
both processes have finished executing this code, each will have the
first 4 bytes of the file in their respective buffers.

In Program 2, the open is executed before the fork so only one
SFT entry exists. It shows a count of 2, indicating that 2 FDT entries
are using it. Parent and child are sharing the same file offset, so un-
der normal circumstances, when both processes have executed this
code, the first 8 bytes of the file will be distributed between them.
It is not possible to predict which bytes will go to each process,
illustrating the unpredictability that often occurs when concurrent
processes access the same shared variable. In this case the shared
variable is the file offset stored in the shared SFT entry.

Figure 4: Part of the simulator diagram for Program 1 (left)
and Program 2 (right).

When independent processes write to the same file, one process
may overwrite data written by the other process. Consider the fol-
lowing program:

Program 3
child=fork();
fd = open("outfile",O WRONLY | O CREAT,0444);
if (child) {

write(fd,"ab",2);
write(fd,"cd",2);

}
else {

write(fd,"AB",2);
write(fd,"CD",2);

}
close(fd);

Parent and child each open the file and try to write 4 bytes. As-
suming that each of the 2-byte writes is atomic and each write re-
turns 2, when both processes are done, the file will contain 4 bytes.
Figure 5 shows a part of the simulator diagram for this program af-
ter the parent has executed the first write followed by the first write
of the child and the second write of the parent. By looking at the
value of the file offset in the appropriate SFT entry, you can see
what will happen next. Since the offset for the child is 2, its write
instruction overwrites the cd already written by the parent.

Several variations of the program can be explored including in-
terchanging the fork and open instructions (the simulator’s Program
4), and adding the O TRUNC and/or O APPEND flags to the open in-
struction.

Figure 5: Part of the simulator diagram for Program 3.

5. CONCURRENCY AMONG THREADS
The simulator supports POSIX compatible create, join and detach

functions. Unlike when processes are created with fork, creation of
threads does not modify the SFT. In Program 5, a file is opened and
a thread is created. The main process reads two bytes from the file
twice and the thread reads two bytes once. If the instructions are
executed atomically, the first 6 bytes of the file are read and it does
not matter in what order the main process and the created thread
execute.

Program 5

fd = open("infile",O RDONLY)

pthread create(&tid1,NULL,firstThread,NULL);

total+=read(fd,buf+total,2);

total+=read(fd,buf+total,2);

pthread join(tid1,NULL);

it uses the following thread:
void *firstThread(void *args) {

total+=read(fd,buf+total,2);
return NULL;

}
When the main process exits, so do all of its created threads.

With the default scheduling (non-premptive, after create: origi-
nal process), the thread would never get to execute, it it were not
for the join instruction. If the scheduling is changed to after create:



new thread the thread reads first. Alternatively, you could remove
the join instruction and detach the thread so it does not exit when
the main process terminates.

By default, the simulator assumes that all instructions are atomic.
Even if file I/O is atomic on a given system, a read instruction like
the one used by the simulator will rarely be atomic on real systems,
and never on RISC hardware. An expression that starts out total +=
will first perform the add in registers and then set total to the sum.
If this instruction is executed concurrently with another instruction
that modifies total, the result may depend on the order in which the
operands are moved into the registers and exactly when the process
loses the CPU. The simulator allows experimenting with this by
allowing the process to lose the CPU at exactly one point during
execution of the instruction. The read is allowed to complete and
its return value is saved (in a register). At this point, the process
may lose the CPU. When it gets the CPU back, total is moved into
another register, the two are added and the result is stored back in
total. Here is an example of a sequence of events that can lead to
an unintended result. Assume that total is initially 0 and the file
contains abcdefgh.

1) The main program executes a read, buf contains ab. The
return value of 2 is saved but before total can be accessed,
the process loses the CPU. The value of total is still 0.

2) The thread executes the read instruction. Since total is still
0, the 2 bytes read are put at the beginning of the buffer,
overwriting what was previously read. The buffer now con-
tains cd.

3) The main process gets the CPU and accesses total, whose
value is now 2, and adds the return value of the read to it,
making total equal to 4. This is the correct value of total,
but only the first two slots in buf have been filled.

4) The main process reads 2 more bytes, but puts them in slots
4 and 5 of buf. The simulator shows buf as containing
cd..ef where the two dots indicate uninitialized values.

The above scenario will occur with the simulator using Program 5
if instructions are set to be non-atomic, scheduling is RR with a
quantum of 3, and after create is set to original process. Clearly,
Program 5 needs some synchronization to make it behave correctly.
One possibility would be to have the main process join the thread
before doing any reads (supported by the simulator) or put mu-
tex locks around the reads in both the main process and the thread.
While the simulator does not support mutex locks, this has the same
effect as making the instructions execute atomically, which is sup-
ported by the simulator.

6. NON-ATOMIC I/O
The POSIX standard does not usually require that I/O be atomic.

Two exceptions are small writes to pipes and FIFOs (not supported
by the simulator), and writes to a file with the O APPEND flag
set. Otherwise concurrent I/O to the same buffer or file needs to be
protected. The simulator allows you to experiment with this.

Problems can occur if a process can lose the CPU during an I/O
instruction. The POSIX standard does not specify whether the file
offset is updated with each byte of I/O, or only after the I/O is com-
plete. For concreteness, the simulator assumes that the file offset is
updated with each byte processed.

When I/O is not atomic, the simulator’s n-byte read instruction is
treated as n+1 instructions, n to read the bytes and 1 to set the value
of total. If we look at Program 5 again and run it with non-atomic
I/O and RR scheduling with a quantum of 3, we can end up with
different values in the buffer depending on the initialization of the
random number generator. Possibilities include bdef, abdf, cdef
and bd..ef.

7. CONCLUSIONS
The simulator has its limitations. It does not directly show how

the operating system translates the name of the file in the open
system call to get an inode. File names are kept only in the directory,
and showing the directory in the simulator, with appropriate arrows
to the inodes would only confuse the diagrams. I like to give this as
part of an assignment by posing a question like the following one:

The simulator indicates the name of the file in the SFT entry. This
does not actually appear in the entry in a real system. Where is the
correspondence between the name of the file and the entry kept in
a UNIX system?

The pictorial representation of the data structures in the User,
System, and Disk spaces is a compromise between usability and
accuracy. File names are included in the SFT and in-memory inode
tables to key the entries to the corresponding open instructions. The
simulator allows you to use the mouse to drag the various data struc-
ture around in their respective spaces to improve the readability of
the diagrams. This was done in Figure 4.

There is no limitation on the number of processes or size of the
programs handled by the simulator, other than Java memory limita-
tions, but the display becomes unusable when the diagram will not
fit on the screen.

A number of choices were made in the simulator design in han-
dling the non-atomic nature of instructions. Rather than allowing a
large number of configurable options, I made decided to only allow
the I/O instructions to behave non-atomically. Of the instructions
handled by the simulator, the read instruction has the greatest oppor-
tunity to behave non-atomically. The limited non-atomic behavior
discussed in Sections 5 and 6 is sufficient to introduce the topic and
allow students to experiment.

This simulator is part of a suite of seven simulators that have
been designed to augment the operating system curriculum. All of
the simulators are written in Java and can be run as Java applica-
tions on any system that supports the Java virtual machine. They are
available on line [4] and can be downloaded individually, or in their
entirety as a CD image. The CD is also available without charge
by contacting the author. The simulators can also be run in demon-
stration mode as a Java applet directly from a browser by following
the the appropriate links on the simulator web page. The web page
also contains user guides for each simulator and information about
using the simulators for in-class demonstrations and assignments.

This simulator is ideal for classroom demonstrations as it allows
for single-stepping through programs and illustrates the dynamic
relationship among the various data structures. When students ask
questions, the Step Back button is useful for examining the various
tables at and earlier step in the execution. At any time during the
demonstration, the current state of the simulator can be saved so
that it can be later restored for reference.
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