
A Java Execution Simulator

Steven Robbins
Department of Computer Science
University of Texas at San Antonio

srobbins@cs.utsa.edu

ABSTRACT
This paper describes JES, a Java Execution Simulator that allows
users to explore how a Java program executes. This interactive sim-
ulator displays a representation of a Java program and animates the
running of the program. Instructors can use JES to demonstrate
how data is moved when variables are assigned, when parameters
are passed, and when values are returned by a method. JES is use-
ful for comparing how primitive and object values are manipulated.
The simulator also demonstrates scope rules, object creation, in-
heritance and polymorphism. While the simulator only supports
variables of type double and object and does not support condition-
als or looping, it allows users to write general Java programs that
might be used as examples in the first weeks of a CS 1 course. JES
also has support for arrays of doubles and objects. The simulator
is written in Java and can be run as an application or an applet.
Support for the simulator includes a simple mechanism for quickly
running the simulator on a program developed with a standard Java
development system.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer & Information Science
Education—Computer Science Education

General Terms
Languages

Keywords
Java programming, simulation, tracing

1. INTRODUCTION
A key skill usually taught in the first computer science course

is how to trace a program. Tracing is a useful for understanding
how programs behave and for finding logical errors in programs.
Textbooks have difficulty describing how to trace a program, since
tracing produces diagrams that change as the trace progresses. Each
variable is typically represented by a box containing the value of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’07, March 7–10, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003 ...$5.00.

variable. As the trace proceeds, the contents of these boxes change.
When a variable is of primitive type, multiple values can be put
in its box with the old values being crossed out as the new values
replace it. For reference variables the process is more difficult, and
diagrams can become overly complicated. Students who copy a
trace diagram from the board (if they can write fast enough while
trying to understand what is happening) are left with the end result
of the trace in their notes. This end result does not reveal the steps
needed to reproduce the trace, and so it is not very useful as a study
aid. The situation becomes even more complicated when objects
are created and destroyed dynamically.

The difficulty in teaching students how to trace programs moti-
vated me to develop this simulator. The simulator is itself a Java
program and can be run on any system used to teach Java program-
ming. Users can write their own programs to use as input to the
simulator. Although they have a number of limitations, acceptable
programs are sufficient to illustrate the general procedure for trac-
ing a program and include a large subset of the programs usually
discussed at the beginning of the first programming course.

The simulator comes with a number of premade examples that
are described below and illustrate the scope of the simulator.

Example 1
declaration of a primitive variable without initialization
declaration of a primitive variable with initialization
assignment of a double expression to a variable
creation of an object using new
passing double parameters
assignment of an object to a variable
changing the state of an object using an alias
use of “this”
a method that returns a primitive value

Example 2
comparison of primitive and object parameter passing

Example 3
declaring an array variable
creating an array, either with new or with a list of values
array assignment
passing an array as a parameter
changing elements of an array in a method
polymorphism

Example 4
inheritance: shape - rectangle - square

While many development environments can show class diagrams
and list objects as they are created, none that I have seen can show
the detailed execution behavior illustrated by this simulator. De-
scribing a simulator of this type is best done by a demonstration of
the running program. Since the simulator can be run as either an
applet or an application, the simplest way to run a demo is through



a web browser. All of the examples in this paper can be run from
a standard Java-enabled browser without the need for any installa-
tion or configuration [2]. The purpose of this paper is to illustrate
enough of the power of the simulator to entice the reader to try it
out on the web. The printed version of this paper is in black-and-
white, while the simulator uses color to enhance the display and
make it easier to understand. The reader will need to use his/her
imagination to envision the full power of the simulator.

The rest of this paper is organized as follows. Section 2 describes
the first example program in detail and shows how the simulator
can be used to illustrate basic concepts in Java programming. The
next three sections cover parameter passing, arrays, and inheritance.
Section 6 describes some additional features and Section 7 discusses
some of the limitations of the simulator. Section 8 describes the
availability if the simulator.

2. A SIMPLE EXAMPLE
Figure 1 shows the simulator display when it starts up with a

simple program. The main class is displayed. When the user pushes
the Start Main button, JES allocates variables (boxes appear next
to the variables declared in main) and displays an arrow pointing
to the first line to be executed. Figure 2 shows this. The boxes next
to the declarations of var1, var3, and shape2 are empty, indicating
that they have not yet been explicitly initialized. Although Java
initializes all attributes, the simulator shows an empty box for all
attributes that have not been explicitly initialized. The box next
to var2 shows the initial value of 1.23 and shape2 is initialized to
null. The arrow next to the first line of code shows that it will be
executed next. Since this is an assignment statement, a box appears
to the right of the statement to hold the value of the expression.

Figure 1: The initial display when JES starts.

JES allows you to step through the program. Each line of code
takes one or more steps to execute. The simple assignment state-
ment for a primitive variable, as shown in Figure 2, executes in two
steps. In the first step, the expression on the right hand side is eval-
uated and the value is stored in the box. JES shows an arrow from
the box next to the expression (the source box) to the storage loca-
tion of the assigned variable (the destination box). (See the left half
of Figure 3.) In the second step the value is moved from the source
box to the destination box. If the simulator is set to show animation,
it animates the movement of the value. In either case the program
counter moves to the next line of code as shown in the right half of
the figure.

Figure 2: The Start Main button has been pushed.

Figure 3: The two parts of the execution of an assignment state-
ment.

The next statement is also an assignment, but it creates a Shape
object using new. In the right half of Figure 3, a box is shown to
hold the reference to the created object. The first step in execut-
ing this line of code is to create a new Shape object and start the
execution of its constructor. This is shown in Figure 4. To save
space, only the header of each method of a class is shown unless
that method is being executed. Only the constructor is shown in its
expanded form in Figure 4. An arrow from the statement in the main
method to the parameters of the constructor in the Shape object in-
dicates that the parameters must be moved from the main program
into the local variables of the constructor. This is done during the
next step of execution. The result is shown in Figure 5. After the
two assignment statements of the Shape constructor are executed,
the new shape is returned. Figure 6 shows the simulator just before
this occurs. The arrow indicates where the flow of control returns.
Figure 7 shows the situation after the constructor returns by falling
off the end. The box at the end of the assignment statement contains
a reference to the created object. An additional arrow shows that
this reference will be moved to the shape1 variable. JES moves
the reference to the assigned variable in the next step as shown in
Figure 8. If animation is used, this movement is animated. Now
each of the methods of the Shape object is shown in its contracted
form since none is active. At any time the user can click on one
of the little triangles at the start of a method header to expand that
method and show all of the code.

The next line of code shows a simple object assignment. After
JES executes this line, both shape1 and shape2 reference the same
object, as shown in Figure 9.



Figure 4: After an object has been created.

Figure 5: During execution of a constructor.

Figure 6: Before returning from a constructor.

Figure 7: After the constructor has been executed.

Figure 8: The object assignment statement is complete.

Figure 9: Two variables reference the same object.



The last two lines output the values of a variable and the descrip-
tion of the object. The toString method of the object, manually
expanded and shown in Figure 9, produces the string used in the
last statement. Figure 10 shows the simulator output window.

Figure 10: The Simulator output window.

3. PASSING PARAMETERS
One of the more difficult concepts in Java programming is the dif-

ference between passing primitive parameters and passing object
parameters. The simulator provides a mechanism for illustrating
this difference. In Example 2, the Shape object has two additional
methods, a badCall method that attempts to change its double pa-
rameter, and a setToMyPosition method that sets the position of
the Shape parameter to the position of this object. The simulator
illustrates that the badCall method only changes the variable that
is local to badCall and does not affect the variable in the calling
method. Example 2 is not shown in this paper.

4. ARRAYS AND POLYMORPHISM
The simulator supports arrays of primitives and arrays of objects.

Example 3 is shown in Figure 11. Some of the methods have been
expanded to show the code. The program illustrates two methods
of creating such an array, in the declaration with an explicit list of
values, and with new. Students are often confused about the differ-
ence between arrays (which are objects) and array variables which
hold references to arrays. The program has three array variables
and three arrays. The first array is created using a list of 5 val-
ues in the declaration. The other two arrays are created using new.
The third array is an array of Shape objects. Polymorphism is il-
lustrated by two versions of the setToMyPosition method, each of
which changes the state of its parameter to reflect the position of
the shape. One takes an array of doubles as a parameter and sets
the first two elements of the array to the position of the shape. The
other method takes a Shape object as a parameter and changes its
position. Figure 12 shows the output window after the program
completes. The implied toString method for arrays used by the
simulator gives useful information.

Figure 12: The output after Figure 11 completes.

5. INHERITANCE
The last example described here shows how the simulator handles

inheritance. These diagrams tend to be quite large so only a sim-
ple example is shown here. The program creates an object of type
Square, which extends Rectangle which in turn extends Shape.

See Figure 13. Inheritance is shown in a UML-like way, with an
arrow from a class to its base class. The simulator can illustrate
how methods in the base class can be overridden and how super is
used to access methods in the base class.

Figure 13: A program and object that uses inheritance.

6. USING THE SIMULATOR
All of the programs illustrated by the simulator are similar to

ones I have traced in class on the board. Tracing on the board is dif-
ficult for the students to follow, because as the values of variables
change, the old value is removed and replaced by the new value.
For primitive variables this is not so bad since it is easy to keep a
record of the previous values stored in a given location. For refer-
ence variables, this is more difficult. The values stored in reference
variables are usually represented as arrows to the referenced object
(as in the simulator) and it is difficult to store a history of these ref-
erences. Often when doing a trace on the board a student will ask
about a previous step and ask me to explain it again. It is difficult to
reproduce the diagram from a few steps back so the previous step
can be traced again. The simulator has a Step Back button that
allows you to step back through the execution of the code.

Since tracing programs that are developed in class is a major
use of the simulator, we provide a separate Java utility program to
facilitate this. The utility program takes two directories as command
line parameters or prompts for these directories if necessary. It
takes all of the Java programs from the first directory, modifies them
appropriately, and copies them into the second directory. The utility
will find the file with the main method and create the appropriate
configuration file for the simulator to use these Java programs. On
some systems, it can also start the simulator. I have used this in
class with programs created by JBuilder, but it should work with any
development system as long as all of the source files are in a single
directory. You can go from creating your project in a development
system to running the same program in the simulator in less than 30
seconds.



Figure 11: An example with arrays.

Another useful feature of the simulator is the ability to set break-
points. The user sets a breakpoint by shift-clicking on a line of code.
When the user pushes the Run button, JES steps through the code
until the next breakpoint is reached. When a breakpoint is set, the
simulator gives you the option to run the program at a faster speed
so that you can get to the breakpoint in a second or two. This is
useful if you want to start animating in the middle of the execution,
or to demonstrate the action of a line of code near the end of the
program. In single step mode the simulator allows both Step Into
and Step Over, similar to many debuggers. The simulator also has
support for static variables and methods which are not described in
this paper.

7. LIMITATIONS
The original simulator supported the data types int and boolean

but I found that they added no additional functionality. Ex-
pressions, either on the right side of an assignment, or within a
System.out.println are evaluated atomically by the simulator. The
simulator does not show the evaluation process. Also, these ex-
pressions cannot contain method calls. This is mainly to simplify
the tracing of the program. A method call can occur on the right
side of an assignment statement only when it stands alone. Without
boolean variables or logical expressions, looping is not possible.
While looping may be added in a future release, the simulator as it
currently exists can handle a large body of programs that typically
occur at the beginning of a CS 1 course. By the time students get
to loops, they should start using the debugger that is built into most
development systems.

The simulator supports variables of type double and object. The
only objects supported are arrays of doubles, arrays of objects, and
objects whose class is explicitly defined by the user. The simulator
does not support boolean variables or conditional statements. It has
very limited support for strings and it does not support any type of
looping.

The simulator does not directly support any of the built-in Java
classes. It does not support variables of type String, but it does al-
low System.out.println and System.out.print. Each of these takes
a single parameter which is a sum of terms. Each term can be a
string literal or the name of a variable. The values of variables of

type double are always displayed and printed using exactly 2 dec-
imal places. If a variable of type object has a toString defined,
the return value of the toString is used. The simulator supports
a limited toString method that contains a single return statement.
The returned String has syntax restrictions similar to those of the
parameter of System.out.println, the most severe of which is the
inability to contain method calls. Since the simulator does not sup-
port variables of type String or general String expressions, this
toString method cannot be called directly. However, it is flexible
enough to be able to describe the state of an object when implicitly
used in a print statement. In Java, the toString method for arrays is
not very useful as it returns a string representing the serial number
of the array object. The simulator replaces this with a list represent-
ing the values of the array. For arrays of objects, the toString of
each element of the array is shown in the list. This is very useful in
showing the current state of the array, especially since the simulator
does not support loops.

JES is intended to be run on correct programs. If asked to sim-
ulate an incorrect program or one with an unsupported feature, the
results are unpredictable and few diagnostics are available.

8. AVAILABILITY
The simulator is freely available. You can run the example code

from a browser by pointing it to the simulator website [2]. You can
also download a zip file containing the required jar files and the
data files for the examples discussed in this paper. This allows the
simulator to be run as an application so that you can provide your
own program files. The web site contains a complete users guide
for the simulator.

The simulator is an outgrowth of a set of simulators that I have
designed for teaching operating systems [1]. All of the simulators
are built upon a common library and have a similar user interface.

9. REFERENCES
[1] S. Robbins, Simulators for teaching operating systems, 2005. Online.

Internet. Available WWW: http://vip.cs.utsa.edu/simulators
[2] S. Robbins, A Java Execution Simulator, 2006. Online. Internet.

Available WWW: http://vip.cs.utsa.edu/javasim


